In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p...In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.展开更多
Flexible flowlines and risers have been increasingly used for deepwater and ultra-deepwater field applications,partially because of its low submerged weight and better dynamic characteristics comparing to rigid pipeli...Flexible flowlines and risers have been increasingly used for deepwater and ultra-deepwater field applications,partially because of its low submerged weight and better dynamic characteristics comparing to rigid pipelines. The offshore installation of flowline may have advantages as well. However,it has special needs for the in-stallation aids,and it is challenging to install tie-in structures due to its low bending stiffness. This paper is to present some of the challenges during a recent flexible installation project with a total of more than 100 km flexible flowlines,and 24 in-line sleds/pipeline end termination(PLET) in water depth up to 1 300 m.展开更多
基金Project(51375498) supported by the National Natural Science Foundation of China
文摘In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.
文摘Flexible flowlines and risers have been increasingly used for deepwater and ultra-deepwater field applications,partially because of its low submerged weight and better dynamic characteristics comparing to rigid pipelines. The offshore installation of flowline may have advantages as well. However,it has special needs for the in-stallation aids,and it is challenging to install tie-in structures due to its low bending stiffness. This paper is to present some of the challenges during a recent flexible installation project with a total of more than 100 km flexible flowlines,and 24 in-line sleds/pipeline end termination(PLET) in water depth up to 1 300 m.