This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function ...This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].展开更多
We propose an optimized cluster density matrix embedding theory(CDMET).It reduces the computational cost of CDMET with simpler bath states.And the result is as accurate as the original one.As a demonstration,we study ...We propose an optimized cluster density matrix embedding theory(CDMET).It reduces the computational cost of CDMET with simpler bath states.And the result is as accurate as the original one.As a demonstration,we study the distant correlations of the Heisenberg J_(1)-J_(2)model on the square lattice.We find that the intermediate phase(0.43≤sssim J_(2)≤sssim 0.62)is divided into two parts.One part is a near-critical region(0.43≤J_(2)≤0.50).The other part is the plaquette valence bond solid(PVB)state(0.51≤J_(2)≤0.62).The spin correlations decay exponentially as a function of distance in the PVB.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11934020)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302402).
文摘This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)].
文摘We propose an optimized cluster density matrix embedding theory(CDMET).It reduces the computational cost of CDMET with simpler bath states.And the result is as accurate as the original one.As a demonstration,we study the distant correlations of the Heisenberg J_(1)-J_(2)model on the square lattice.We find that the intermediate phase(0.43≤sssim J_(2)≤sssim 0.62)is divided into two parts.One part is a near-critical region(0.43≤J_(2)≤0.50).The other part is the plaquette valence bond solid(PVB)state(0.51≤J_(2)≤0.62).The spin correlations decay exponentially as a function of distance in the PVB.