The thermal quantum discord (QD) is studied in a two-qubit Heisenberg XXZ system with DzyaloshinskiiMoriya (DM) interaction. We compare the thermal QD with thermal entanglement in this system and find remarkable d...The thermal quantum discord (QD) is studied in a two-qubit Heisenberg XXZ system with DzyaloshinskiiMoriya (DM) interaction. We compare the thermal QD with thermal entanglement in this system and find remarkable differences between them. For instance, we show situations where QD decreases asymptotically to zero with temperature T while entanglement decreases to zero at the point of critical temperature, situations where QD decreases with certain tunable parameters such as Dx and Dx when entanglement increases. We find that the characteristic of QD is exotic in this system and this possibly offers a potential solution to enhance entanglement of a system. We also show that tunable parameter Dx is more efficient than parameter Dz in most regions for controlling the QD.展开更多
We investigate the entanglement transfer in a four-qubit system and calculate the concurrence between any two qubits in different initial states. We show that both the pure entangled state and mixed entangled state ca...We investigate the entanglement transfer in a four-qubit system and calculate the concurrence between any two qubits in different initial states. We show that both the pure entangled state and mixed entangled state can be transferred. For some special coupling constants and some evolution time, entanglement can be completely transferred from one pair particles to another.展开更多
The effects of spin-spin interaction on thermed entanglement of a two-qubit Heisenberg XYZ model with different inhomogeneous magnetic fields are investigated. It is shown that the entanglement is dependent on the spi...The effects of spin-spin interaction on thermed entanglement of a two-qubit Heisenberg XYZ model with different inhomogeneous magnetic fields are investigated. It is shown that the entanglement is dependent on the spin-spin interaction and the inhomogeneous magnetic fields. The larger the Ji (i-axis spin-spin interaction), the higher critical value the Bi (i-axis uniform magnetic field) has. Moreover, in the weak-field regime, the larger Ji corresponds to more entanglement, while in the strong-field regime, different Ji correspond to the same entanglement. In addition, it is found that with the increase of Ji, the concurrence can approach the maximum value more rapidly for the smaller Bi, and can reach a larger value for the smaller bi (i-axis nonuniform magnetic field). So we can get more entanglement by increasing the spin-spin interaction Ji, or by decreasing the uniform magnetic field Bi and the nonuniform magnetic field hi.展开更多
The effects of the different Dzyaloshinskii-Moriya (DM) interaction on thermal entanglement of a two-qutrit Heisenberg XX spin chain in a nonuniform magnetic field are investigated. Our results imply that the x-comp...The effects of the different Dzyaloshinskii-Moriya (DM) interaction on thermal entanglement of a two-qutrit Heisenberg XX spin chain in a nonuniform magnetic field are investigated. Our results imply that the x-component DM interaztion plays a central role in enhancing quantum entanglement and it has a higher critical temperature than the z-component DM interaction. The entanglement can be tunable controlled by changing the multiple of the magnetic fields B1 and B2. Also we found that different DM interaction are competitive to each other in some conditions.展开更多
Quantum correlations measured by quantum discord (QD), measurement-induced distance (MID), and geometric measure of quantum discord (GMQD) in two-qubit Heisenberg XY spin chain are investigated. The effects of D...Quantum correlations measured by quantum discord (QD), measurement-induced distance (MID), and geometric measure of quantum discord (GMQD) in two-qubit Heisenberg XY spin chain are investigated. The effects of DM interaction and anisotropic on the three correlations are considered. Characteristics of various correlation measures for the two-qubit states are compared. The increasing Dz increases QD, MID and GMQD monotonously while the increasing anisotropy both increases and decreases QD and GMQD. The three quantum correlations are always existent at very high temperature. MID is always larger than QD, but there is no definite ordering between QD and GMQD. PACS numbers: 03.65.Ta, 03.67.Mn展开更多
Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards-Anderson model. By simulation, we investigate the dynamicaJ properties o...Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards-Anderson model. By simulation, we investigate the dynamicaJ properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameterμ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent g2. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.90503009,10775116973 Program under Grant No.2005CB724508
文摘The thermal quantum discord (QD) is studied in a two-qubit Heisenberg XXZ system with DzyaloshinskiiMoriya (DM) interaction. We compare the thermal QD with thermal entanglement in this system and find remarkable differences between them. For instance, we show situations where QD decreases asymptotically to zero with temperature T while entanglement decreases to zero at the point of critical temperature, situations where QD decreases with certain tunable parameters such as Dx and Dx when entanglement increases. We find that the characteristic of QD is exotic in this system and this possibly offers a potential solution to enhance entanglement of a system. We also show that tunable parameter Dx is more efficient than parameter Dz in most regions for controlling the QD.
文摘We investigate the entanglement transfer in a four-qubit system and calculate the concurrence between any two qubits in different initial states. We show that both the pure entangled state and mixed entangled state can be transferred. For some special coupling constants and some evolution time, entanglement can be completely transferred from one pair particles to another.
基金Supported by National Natural Science Foundation of China under Grant No. 10704001Anhui Provincial Natural Science Foundation under Grant No. 070412060+1 种基金the Major Program of the Education Department of Anhui Province under Grant No. KJ2010ZD08the Key Program of the Education Department of Anhui Province under Grant No. KJ2010A287
文摘The effects of spin-spin interaction on thermed entanglement of a two-qubit Heisenberg XYZ model with different inhomogeneous magnetic fields are investigated. It is shown that the entanglement is dependent on the spin-spin interaction and the inhomogeneous magnetic fields. The larger the Ji (i-axis spin-spin interaction), the higher critical value the Bi (i-axis uniform magnetic field) has. Moreover, in the weak-field regime, the larger Ji corresponds to more entanglement, while in the strong-field regime, different Ji correspond to the same entanglement. In addition, it is found that with the increase of Ji, the concurrence can approach the maximum value more rapidly for the smaller Bi, and can reach a larger value for the smaller bi (i-axis nonuniform magnetic field). So we can get more entanglement by increasing the spin-spin interaction Ji, or by decreasing the uniform magnetic field Bi and the nonuniform magnetic field hi.
基金Supported by the Pre-Research Foundation of PLA University of Science and Technology under Grant No.KYLYZLXY1203
文摘The effects of the different Dzyaloshinskii-Moriya (DM) interaction on thermal entanglement of a two-qutrit Heisenberg XX spin chain in a nonuniform magnetic field are investigated. Our results imply that the x-component DM interaztion plays a central role in enhancing quantum entanglement and it has a higher critical temperature than the z-component DM interaction. The entanglement can be tunable controlled by changing the multiple of the magnetic fields B1 and B2. Also we found that different DM interaction are competitive to each other in some conditions.
基金Supported by Chinese Universities Scientific Fund under Grant No.BUPT2011RC070the National Natural Science Foundation of China under Grant No.61178010
文摘Quantum correlations measured by quantum discord (QD), measurement-induced distance (MID), and geometric measure of quantum discord (GMQD) in two-qubit Heisenberg XY spin chain are investigated. The effects of DM interaction and anisotropic on the three correlations are considered. Characteristics of various correlation measures for the two-qubit states are compared. The increasing Dz increases QD, MID and GMQD monotonously while the increasing anisotropy both increases and decreases QD and GMQD. The three quantum correlations are always existent at very high temperature. MID is always larger than QD, but there is no definite ordering between QD and GMQD. PACS numbers: 03.65.Ta, 03.67.Mn
基金Supported by National Natural Science Foundation of China under Grant Nos.11247428,61274101Natural Science Foundation of Liaoning Province under Grant No.20121078
文摘Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards-Anderson model. By simulation, we investigate the dynamicaJ properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameterμ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent g2. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature.