It is promising to simultaneously develop multiple products through the combined utilization of seawater by solar chimney technology. A small scale experimental system was set up. The collector temperature, the seawat...It is promising to simultaneously develop multiple products through the combined utilization of seawater by solar chimney technology. A small scale experimental system was set up. The collector temperature, the seawater temperature, and the temperature and humidity of the airflow under the collector were measured. Thermal network analysis of the system was carried out. The results show that the airflow is nearly saturated at the entrance of the chimney, and the mean dry-bulb and wet-bulb temperatures of the airflow have increased by 8.4 ℃ and 9.6 ℃, respectively. The radiation heat transfer between the collector and the sky is the biggest heat loss in the system, which is up to 29.1% on average of the solar energy. However, the water evaporation heat is about 23.6% on average of the solar energy. To reduce the heat loss and enhance the water evaporation, it is necessary to reduce the emissivity and thermal conductivity of the collector and increase the evaporation areas.展开更多
基金Supported by Tianjin Technological Development Program Project of China (No05YFGZSF02800 and No06YFSZSF04600)the Key Research Program of the National Eleventh Five-Year Plan of China (No 2006BAA04B03-03)
文摘It is promising to simultaneously develop multiple products through the combined utilization of seawater by solar chimney technology. A small scale experimental system was set up. The collector temperature, the seawater temperature, and the temperature and humidity of the airflow under the collector were measured. Thermal network analysis of the system was carried out. The results show that the airflow is nearly saturated at the entrance of the chimney, and the mean dry-bulb and wet-bulb temperatures of the airflow have increased by 8.4 ℃ and 9.6 ℃, respectively. The radiation heat transfer between the collector and the sky is the biggest heat loss in the system, which is up to 29.1% on average of the solar energy. However, the water evaporation heat is about 23.6% on average of the solar energy. To reduce the heat loss and enhance the water evaporation, it is necessary to reduce the emissivity and thermal conductivity of the collector and increase the evaporation areas.