The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed ...The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed for research and operational purposes. The system is based on a multivariate Ensemble Optimal Interpolation (EnOI) scheme and considers the high fre- quency variability of the model error co-variance matrix. The EnOl can assimilate sea surface temperature (SST), satellite along-track and gridded sea level anomalies (SLA), and vertical profiles of temperature (T) and salinity (S) from Argo. The first observing system experiment was carried out over the Atlantic Ocean (78°S-50°N, 100°W-20°E) with HYCOM forced with atmospheric reanalysis from 1 January to 30 June 2010. Five integra- tions were performed, including the control run without assimilation. In the other four, different observations were assimilated: SST only (A SST); Argo T-S profiles only (AArgo); along-track SLA only (A_SLA); and all data employed in the previous runs (A_All). The A_SST, A_Argo, and A_SLA runs were very effective in improv- ing the representation of the assimilated variables, but they had relatively little impact on the variables that were not assimilated. In particular, only the assimilation of S was able to reduce the deviation of S with respect to ob- servations. Overall, the A_All run produced a good analy- sis by reducing the deviation of SST, T, and S with respect to the control run by 39%, 18%, and 30%, respectively, and by increasing the correlation of SLA by 81%.展开更多
As molecular weight controls the biological activities of polysaccharides, screening the optimal molecular weight of polysaccharides is important in drug research and application. In this study, hydrogen peroxide was ...As molecular weight controls the biological activities of polysaccharides, screening the optimal molecular weight of polysaccharides is important in drug research and application. In this study, hydrogen peroxide was employed as oxidant, and temperature, reaction time, and concentration of polysaccharides and hydrogen peroxide were examined for their effects on the preparation of polysaccharides in different molecular weights from Ulva pertusa. Our experiment suggested that the optimal degradation concentrations for polysac-charides and hydrogen peroxide were 2.5% (w/v) and 8.0% (v/v), respectively. The range of degradation measured by relative viscosity was mainly controlled by temperature and time. Results revealed that 35℃ was the optimal temperature for obtaining low-degradation samples, and 50℃ was the most favorable temperature to accelerate the reaction to yield highly-degraded samples. Four samples in different molecular weights A, B, C and D were finally prepared. The controllability was evaluated by the relative standard deviation (RSD) of relative viscosity, and the peak molecular weights and the polydispersity indexes (Mw/Mn) of molecular weights were measured by high performance gel permeation chromatography (HPGPC).展开更多
Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in c...Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment.展开更多
The Quaternary continental slope of the Baiyun Sag in northern South China Sea is characterized by a complex topography and abundant gravity flow sedimentation.High-resolution 3-D seismic data in this area allow for a...The Quaternary continental slope of the Baiyun Sag in northern South China Sea is characterized by a complex topography and abundant gravity flow sedimentation.High-resolution 3-D seismic data in this area allow for a detailed study of the seismic geomorphology and deep-water gravity flow depositional process.The Quaternary continental slope in the northern South China Sea is an above-graded slope.An intraslope basin lies within the above-grade continental slope.Slump,erosion,and deposition processes tend to develop a gentle topography and consequently a graded slope.The upper continental slope,which is above the slope equilibrium profile,is dominated by erosion and slumping.Slides,slumps and erosional channels are developed within this continental slope.The intraslope basin is located below the slope equilibrium profile and is potential accommodation space where sediments transported by gravity flows could be deposited,forming lobe aprons.Under the influence of gravity flow supply,gravity flow duration,continental slope topography,equilibrium profile,and accommodation,a slump-erosional channel-lobe depositional system is developed in the Quaternary continental slope in the Baiyun Sag.The deep-water gravity flow depositional process and the distribution of gravity flow sediments are greatly influenced by the continental slope topography,while the continental slope topography at the same time is reshaped by deep-water gravity flow depositional process and its products.The study of the interplay between the continental slope and gravity flow is helpful in predicting the distribution of the deep-water gravity flow sediments and the variation of sediment quality.展开更多
Temperature and pressure on seafloor of the northern slope in the South China Sea are suitable for gas hydrate formation, but bottom simulation reflector (BSR), an indication of gas hydrate occurrence, only occurred i...Temperature and pressure on seafloor of the northern slope in the South China Sea are suitable for gas hydrate formation, but bottom simulation reflector (BSR), an indication of gas hydrate occurrence, only occurred in limited areas of the slope. Drillings in the BSR-distributed area (the District S) on the northern slope of the South China Sea suggested that gas hydrate only occurred at Sites SH2, SH3, and SH7 with high saturation (up to 20%-40%), and there is no hydrate at Sites SH1 and SH5 although the distance between SH1 to SH3 is only 500m. In this paper, we investigated seafloor gradient, fault development, temperature, and pressure in the District S on the northern slope of the South China Sea to understand the possible factors con- trolling BSR distribution and gas hydrate occurrence. The District S is a structurally fractured continental slope zone and its seafloor gradient varied greatly. The BSR-occurred areas have an average gradient of 19.89×10 2 whereas the BSR-free zone has the average gradient of 10.57×10 2 . The calculated relative structural intensities from fault densities and displacements show that the BSR-distributed areas tend to occur in the areas with a moderately high structural intensity, where faults frequently developed close to the seafloor that are possibly favored for lateral migration of gases. On the basis of temperatures and pressures at drilling sites, hydrate-occurred Sites SH2, SH3, and SH7 are located within the thermodynamically stable area for methane hydrate, and hydrate-absent Sites SH1 and SH5 are out of the thermodynamically stable area for methane hydrate formation, suggesting that both BSR and the thermodynamic stability are necessary for hydrate occurrence in the subsurface.展开更多
An in situ calibration system is a versatile exploration instrument for electrochemical sensors investigating the biochemical properties of the marine environment. The purpose of this paper is to describe the design o...An in situ calibration system is a versatile exploration instrument for electrochemical sensors investigating the biochemical properties of the marine environment. The purpose of this paper is to describe the design of an auto-calibrating system for electrochemical (pH) sensors, which permits two-point in situ calibration, suitable for long-term measurement in deep sea aqueous environments. Holding multiple sensors, the instrument is designed to perform long-term measurements and in situ calibrations at abyssal depth (up to 4000 m). The instrument is composed of a compact fluid control system which is pressure-equilibrated and designed for deep-sea operation. In situ calibration capability plays a key role in the quality and reproducibility of the data. This paper focuses on methods for extending the lifetime of the instrument, considering the fluidics design, mechanical design, and low-power consumption of the electronics controller. The instrument can last 46 d under normal operating conditions, fulfilling the need for long-term operation. Data concerning pH measured during the KNOX18RR cruise (Mid-Atlantic Ridge, July-August, 2008) illustrate the desirable properties of the instrument. Combined with different electrodes (pH, H2, H2S, etc.), it should be of great utility for the study of deep ocean environments, including water column and diffuse-flow hydrothermal fluids.展开更多
基金financially supported by the Brazilian State oil company Petróleo Brasileiro S. A. (Petrobras) and Agência Nacional de Petróleo (ANP), Gás Natural e Biocombustíveis, Brazil, via the Oceanographic Modeling and Observation Network (REMO)support of the Coordenao de Aperfeioamento de Pessoal de Nível Superior (CAPES), Ministry of Education of Brazil (Proc. BEX 3957/13-6)
文摘The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed for research and operational purposes. The system is based on a multivariate Ensemble Optimal Interpolation (EnOI) scheme and considers the high fre- quency variability of the model error co-variance matrix. The EnOl can assimilate sea surface temperature (SST), satellite along-track and gridded sea level anomalies (SLA), and vertical profiles of temperature (T) and salinity (S) from Argo. The first observing system experiment was carried out over the Atlantic Ocean (78°S-50°N, 100°W-20°E) with HYCOM forced with atmospheric reanalysis from 1 January to 30 June 2010. Five integra- tions were performed, including the control run without assimilation. In the other four, different observations were assimilated: SST only (A SST); Argo T-S profiles only (AArgo); along-track SLA only (A_SLA); and all data employed in the previous runs (A_All). The A_SST, A_Argo, and A_SLA runs were very effective in improv- ing the representation of the assimilated variables, but they had relatively little impact on the variables that were not assimilated. In particular, only the assimilation of S was able to reduce the deviation of S with respect to ob- servations. Overall, the A_All run produced a good analy- sis by reducing the deviation of SST, T, and S with respect to the control run by 39%, 18%, and 30%, respectively, and by increasing the correlation of SLA by 81%.
基金This work was supported by the Scientific and Technical Bureau of Shandong Province.
文摘As molecular weight controls the biological activities of polysaccharides, screening the optimal molecular weight of polysaccharides is important in drug research and application. In this study, hydrogen peroxide was employed as oxidant, and temperature, reaction time, and concentration of polysaccharides and hydrogen peroxide were examined for their effects on the preparation of polysaccharides in different molecular weights from Ulva pertusa. Our experiment suggested that the optimal degradation concentrations for polysac-charides and hydrogen peroxide were 2.5% (w/v) and 8.0% (v/v), respectively. The range of degradation measured by relative viscosity was mainly controlled by temperature and time. Results revealed that 35℃ was the optimal temperature for obtaining low-degradation samples, and 50℃ was the most favorable temperature to accelerate the reaction to yield highly-degraded samples. Four samples in different molecular weights A, B, C and D were finally prepared. The controllability was evaluated by the relative standard deviation (RSD) of relative viscosity, and the peak molecular weights and the polydispersity indexes (Mw/Mn) of molecular weights were measured by high performance gel permeation chromatography (HPGPC).
基金Project(2006AA09Z235) supported by the National High Technology Research and Development Program of ChinaProject(CX2009B003) supported by Hunan Provincial Innovation Foundation For Postgraduates,China
文摘Autonomous underwater vehicles (AUVs) navigating in complex sea conditions usually require a strong control system to keep the fastness and stability. The nonlinear trajectory tracking control system of a new AUV in complex sea conditions was presented. According to the theory of submarines,the six-DOF kinematic and dynamic models were decomposed into two mutually non-coupled vertical and horizontal plane subsystems. Then,different sliding mode control algorithms were used to study the trajectory tracking control. Because the yaw angle and yaw angle rate rather than the displacement of the new AUV can be measured directly on the horizontal plane,the sliding mode control algorithm combining cross track error method and line of sight method was used to fulfill its high-precision trajectory tracking control in the complex sea conditions. As the vertical displacement of the new AUV can be measured,in order to achieve the tracking of time-varying depth signal,a stable sliding mode controller was designed based on the single-input multi-state system,which took into account the characteristic of the hydroplane and the amplitude and rate constraints of the hydroplane angle. Moreover,the application of dynamic boundary layer can improve the robustness and control accuracy of the system. The computational results show that the designed sliding mode control systems of the horizontal and vertical planes can ensure the trajectory tracking performance and accuracy of the new AUV in complex sea conditions. The impacts of currents and waves on the sliding mode controller of the new AUV were analyzed qualitatively and quantitatively by comparing the trajectory tracking performance of the new AUV in different sea conditions,which provides an effective theoretical guidance and technical support for the control system design of the new AUV in real complex environment.
基金supported by National Basic Research Program of China (Grant No. 2009CB219407)National Natural Science Foundation of China (Grant No. 40972077)
文摘The Quaternary continental slope of the Baiyun Sag in northern South China Sea is characterized by a complex topography and abundant gravity flow sedimentation.High-resolution 3-D seismic data in this area allow for a detailed study of the seismic geomorphology and deep-water gravity flow depositional process.The Quaternary continental slope in the northern South China Sea is an above-graded slope.An intraslope basin lies within the above-grade continental slope.Slump,erosion,and deposition processes tend to develop a gentle topography and consequently a graded slope.The upper continental slope,which is above the slope equilibrium profile,is dominated by erosion and slumping.Slides,slumps and erosional channels are developed within this continental slope.The intraslope basin is located below the slope equilibrium profile and is potential accommodation space where sediments transported by gravity flows could be deposited,forming lobe aprons.Under the influence of gravity flow supply,gravity flow duration,continental slope topography,equilibrium profile,and accommodation,a slump-erosional channel-lobe depositional system is developed in the Quaternary continental slope in the Baiyun Sag.The deep-water gravity flow depositional process and the distribution of gravity flow sediments are greatly influenced by the continental slope topography,while the continental slope topography at the same time is reshaped by deep-water gravity flow depositional process and its products.The study of the interplay between the continental slope and gravity flow is helpful in predicting the distribution of the deep-water gravity flow sediments and the variation of sediment quality.
基金supported by National Basic Research Program of China(Grant No. 2009CB219508)Chinese Academy of Sciences (Grant No.KZCX2-YW-GJ03)National Natural Science Foundation of China(Grant No. 91228206)
文摘Temperature and pressure on seafloor of the northern slope in the South China Sea are suitable for gas hydrate formation, but bottom simulation reflector (BSR), an indication of gas hydrate occurrence, only occurred in limited areas of the slope. Drillings in the BSR-distributed area (the District S) on the northern slope of the South China Sea suggested that gas hydrate only occurred at Sites SH2, SH3, and SH7 with high saturation (up to 20%-40%), and there is no hydrate at Sites SH1 and SH5 although the distance between SH1 to SH3 is only 500m. In this paper, we investigated seafloor gradient, fault development, temperature, and pressure in the District S on the northern slope of the South China Sea to understand the possible factors con- trolling BSR distribution and gas hydrate occurrence. The District S is a structurally fractured continental slope zone and its seafloor gradient varied greatly. The BSR-occurred areas have an average gradient of 19.89×10 2 whereas the BSR-free zone has the average gradient of 10.57×10 2 . The calculated relative structural intensities from fault densities and displacements show that the BSR-distributed areas tend to occur in the areas with a moderately high structural intensity, where faults frequently developed close to the seafloor that are possibly favored for lateral migration of gases. On the basis of temperatures and pressures at drilling sites, hydrate-occurred Sites SH2, SH3, and SH7 are located within the thermodynamically stable area for methane hydrate, and hydrate-absent Sites SH1 and SH5 are out of the thermodynamically stable area for methane hydrate formation, suggesting that both BSR and the thermodynamic stability are necessary for hydrate occurrence in the subsurface.
基金Project supported by National Natural Science Foundation of China (No. 40637037)the National High-Tech Research and Development Program (863) of China (No. 2007AA091901)+1 种基金the National Science Foundation of U.S. (No. 0525907)the China Scholarship Council (No. 2009632124)
文摘An in situ calibration system is a versatile exploration instrument for electrochemical sensors investigating the biochemical properties of the marine environment. The purpose of this paper is to describe the design of an auto-calibrating system for electrochemical (pH) sensors, which permits two-point in situ calibration, suitable for long-term measurement in deep sea aqueous environments. Holding multiple sensors, the instrument is designed to perform long-term measurements and in situ calibrations at abyssal depth (up to 4000 m). The instrument is composed of a compact fluid control system which is pressure-equilibrated and designed for deep-sea operation. In situ calibration capability plays a key role in the quality and reproducibility of the data. This paper focuses on methods for extending the lifetime of the instrument, considering the fluidics design, mechanical design, and low-power consumption of the electronics controller. The instrument can last 46 d under normal operating conditions, fulfilling the need for long-term operation. Data concerning pH measured during the KNOX18RR cruise (Mid-Atlantic Ridge, July-August, 2008) illustrate the desirable properties of the instrument. Combined with different electrodes (pH, H2, H2S, etc.), it should be of great utility for the study of deep ocean environments, including water column and diffuse-flow hydrothermal fluids.