期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
进样泵在海水气体水下气相色谱原位测试系统中应用
1
作者 杨群慧 王凯 +1 位作者 韦婧 米智楠 《流体传动与控制》 2017年第3期42-44,共3页
海水中的标志性气体是追索海洋物理、化学和生物过程变化的有效示踪剂。水下气相色谱原位气体测试系统有望成为一种有效的深海气体原位检测技术,能在水下对深海中的多种溶解性气体进行准确的原位检测。进样泵是水下气相色谱原位气体测... 海水中的标志性气体是追索海洋物理、化学和生物过程变化的有效示踪剂。水下气相色谱原位气体测试系统有望成为一种有效的深海气体原位检测技术,能在水下对深海中的多种溶解性气体进行准确的原位检测。进样泵是水下气相色谱原位气体测试系统的一个重要部件,阐述了进样泵耐压壳体的计算模型,仿真分析了压力储备对不同布放深度下壁厚的影响。 展开更多
关键词 水下气相色谱 海水气体 原位测试 进样泵 耐压筒体
下载PDF
Focused fluid flow in the Baiyun Sag, northern South China Sea: implications for the source of gas in hydrate reservoirs 被引量:11
2
作者 陈端新 吴时国 +3 位作者 董冬冬 米立军 付少英 施和生 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期178-189,共12页
The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three... The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates. 展开更多
关键词 gas hydrate thermogenic gas biogenic gas Dongsha Movement focused fluid flow SouthChina Sea
下载PDF
Sponge Effect on Coal Mine Methane Separation Based on Clathrate Hydrate Method 被引量:14
3
作者 ZHANG Baoyong CHENG Yuanping WU Qiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第4期610-614,共5页
The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carrie... The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment. 展开更多
关键词 coal mine methane separation clathrate hydrate SPONGE porous media mass transfer
下载PDF
Carbon dioxide partial pressure and carbon fluxes of air-water interface in Taihu Lake, China 被引量:2
4
作者 范成新 胡维平 +3 位作者 Phillip W. Ford 陈宇炜 瞿文川 张路 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2005年第1期29-38,共10页
To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide par... To obtain carbon dioxide (CO2) flux between water-air interface of Taihu lake, monthly water samplers at 14 sites and the local meteorological data of the lake were collected and analyzed in 1998. Carbon dioxide partial pressures (pCO2) at air-water interface in the lake were calculated using alkalinity, pH, ionic strength, active coefficient, and water temperature. The carbon fluxes at different sublakes and areas were estimated by concentration gradient between water and air in consideration of Schmidt numbers of 600 and daily mean windspeed at 10 m above water surface. The results indicated that the mean values of pCO2 in Wuli Lake,Meiliang Bay, hydrophyte area, west littoral zone, riverine mouths, and the open lake areas were 1 807.8±1 071.4(mean±standard deviation)μatm (latm=1.013 25×10^5pa), 416.3±217.0μatm, 576.5±758.8μatm, 304.2±9.43.5μatm, 1 933.6±1 144.7 μatm, and 448.5±202.6μatm, respectively. Maximum and minimum pCO2 values were found in the hypertrophic (4 053.7μatm) and the eutrophic (3.2 μatm) areas. The riverine mouth areas have the maximum fluxes (82.0±62.8 mmol/m^2a). But there was no significant difference between eutrophic and mesotrophic areas in pCO2 and the flux of CO2. The hydrophyte area, however, has the minimum (--0.58±12.9mmol/m^2a). In respect to CO2 equilibrium, input of the rivers will obviously influence inorganic carbon distribution in the riverine estuary. For example, the annual mean CO2 flux in Zhihugang River estuary was 19 times of that in Meiliang Bay, although the former is only a part of the latter. The sites in the body of the lake show a clear seasonal cycle with pCO2 higher than atmospheric equilibrium in winter, and much lower than atmospheric in summer due to CO2 consumption by photosynthesis. The CO2 amount of the net annual evasion that enters the atmosphere is 28.42×10^4 t/a, of which those from the west littoral zone and the open lake account for 53.8% and 36.7%, respectively. 展开更多
关键词 carbon dioxide partial pressure air-water interface carbon flux trophic area river input Taihu Lake
下载PDF
Estimation of the Hydrodynamic Regime of the Water Movement under the Influence of the Atmospheric Processes in the Bering Sea and the Sea of Okhotsk
5
作者 G.A. Vlasova 《Journal of Environmental Science and Engineering》 2011年第10期1276-1281,共6页
The given investigation presents the results of estimating the water circulation in the water area of the Bering Sea and the Sea of Okhotsks, considering the influence of various types of the atmospheric processes. To... The given investigation presents the results of estimating the water circulation in the water area of the Bering Sea and the Sea of Okhotsks, considering the influence of various types of the atmospheric processes. To solve the given problem it is used a hydrodynamic model calculating the integral functions of the flow from the surface to the bottom. By results of calculations, the maps of the integral water circulation were built for the following types of atmospheric circulation: "north-western" and "okhotsk-aleutian". In accordance with the performed calculations for the water area being studied, the hydrodynamic structures are distinguished both non-depending and depending on the type of the atmospheric circulation. The non-depending structures are characterized by the cyclonic activity in the Bering Sea and the Sea of Okhotsk in whole. Hydrodynamic structures depending on types of the atmospheric circulation have their peculiarities in the spatial-temporal distribution. 展开更多
关键词 Bering Sea the Sea of Okhotsk water and atmospheric circulation CYCLONES ANTICYCLONES vortices.
下载PDF
Seasonally evolving dominant interannual variability mode of air-sea CO2 flux over the western North Pacific simulated by CESM1-BGC 被引量:1
6
作者 JIN ChenXi ZHOU TianJun +1 位作者 CHEN XiaoLong WU Bo 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第10期1854-1865,共12页
We applied a season-reliant empirical orthogonal function(S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO_2 flux over the western North ... We applied a season-reliant empirical orthogonal function(S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO_2 flux over the western North Pacific(WNP)(0°–35°N, 110°E–150°E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Ni-Southern Oscillation(ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO_2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO_2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone(WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO_2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO_2 uptake by enhancing surface seawater CO_2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO_2 flux anomalies in the spring. 展开更多
关键词 Air-sea CO2 flux Western North Pacific Interannual variability ENSO
原文传递
Factors influencing the porosity of gas hydrate bearing sediments 被引量:4
7
作者 HE Jing LIU XueWei +2 位作者 YU Zhen XIE ChengLiang LI ZiWei 《Science China Earth Sciences》 SCIE EI CAS 2013年第4期557-567,共11页
Porosity is a key parameter in calculating the velocity of gas hydrate bearing sediments and quantifying the amount of gas hydrate. The variation of porosity is affected by many factors. The influences of different fa... Porosity is a key parameter in calculating the velocity of gas hydrate bearing sediments and quantifying the amount of gas hydrate. The variation of porosity is affected by many factors. The influences of different factors on porosity are distinct. The purpose of this paper is to analyze the main factors that affect the overall and local change of porosity in marine sediments where gas hydrate was sampled. Porosity logs were collected from ODP Leg 164, Blake Ridge, ODP Leg 204, Hydrate Ridge, and IODP expedition 311, Cascadia Margin. Based on the characteristic of porosity variation in depth, porosity was divided into three components: low frequency component, middle frequency component, and high frequency component. The factors influencing each component were discussed. From the analysis, we observed that the porosity of unconsolidated sediment was very high, and the decreasing trend of low frequency component versus depth was affected by compaction. In addition, the initial porosity and slope of low frequency component variation were affected by the content of fine grain and geothermal gradient respectively. The middle component could reflect the variation of lithology, which was affected by the content variation of different sized grains and gas hydrate. The high frequency component was affected by the frequent change of grain size. The existence of volcanic ash-rich sand caused a high value to the high frequency component. The results are applicable to porosity evaluation in gas hydrate bearing sediments. 展开更多
关键词 POROSITY gas hydrate three components of porosity unconsolidated sediment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部