Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distributio...Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distribution pattern of uncertainty in measurement of seawater COD is obtained based on the measured results of the series of standard solutions by the potassium iodide-alkaline potassium permanganate determination method. The distribution pattern is as follows: Uncertainty in measurement is big and not constant at the high end, but small and constant at the low end.展开更多
Radium isotopes 226Ra and 228Ra in seawater of the western Yellow Sea were measured by using the Mn-fiber adsorption - HPGe 7 spectrum method. The distribution features of the two isotopes have been studied. The activ...Radium isotopes 226Ra and 228Ra in seawater of the western Yellow Sea were measured by using the Mn-fiber adsorption - HPGe 7 spectrum method. The distribution features of the two isotopes have been studied. The activities of 226Ra and 228Ra are 2.72-5.57 Bq m^-3 and 7.51-34.3 Bq m^-3 respectively. The activities of 226Ra and 228Ra from surface to bottom for each depth profile station are comparable within the experimental error, but the mean activities decrease with distance from the shore. From the distribution data of 228Ra, the horizontal eddy diffusion coefficient was estimated at 29 × 10^6 cm^2 s^- 1.展开更多
It is difficult to determine the photosynthetic parameters of non-fiat leaves/green stems using photosynthetic instruments, due to the unusual morphology of both organs, especially for Suaeda salsa and Salicornia bige...It is difficult to determine the photosynthetic parameters of non-fiat leaves/green stems using photosynthetic instruments, due to the unusual morphology of both organs, especially for Suaeda salsa and Salicornia bigelovii as two seawater-tolerant vegetables. To solve the problem, we developed a simple, practical, and effective method to measure and calculate the photosynthetic parameters (such as PN, gs, E) based on unit fresh mass, instead of leaf area. The light/COftemperature response curves of the plants can also be measured by this method. This new method is more effective, stable, and reliable than conventional methods for plants with non-flat leaves. In addition, the relative notes on measurements and calculation of photosynthetic parameters were discussed in this paper. This method solves technical difficulties in photosynthetic parameter determination of the two seawater-tolerant vegetables and similar plants.展开更多
A novel method for on-site determination of trace iron was developed using membrane preconcentration and spectrophotometric detection. Fe(II)-ferrozine complex was reacted with cetyltrimethylammonium bromide (CTAB...A novel method for on-site determination of trace iron was developed using membrane preconcentration and spectrophotometric detection. Fe(II)-ferrozine complex was reacted with cetyltrimethylammonium bromide (CTAB) to form a Fe(II)-ferrozine-CTAB paired compound, which was collected on a membrane by filtration under vacuum. The membrane was immersed in 2 mL of ethanol-nitric acid and the absorbance of the solution measured for quantitative analysis. Various factors affecting the iron collection and determination were investigated. With different sample preconcentration volumes, the range of determination was broadened to 0.5-120 ~tg/L. The detection limit of this method reached 0.19 ktg/L and the recoveries were between 97.2 and 109% when the concentration enrichment was about 45. The relative standard deviation (n = 7) was 1.9% for samples containing 10 ~g/L Fe. Twelve seawater samples were analyzed on-site using the proposed method, and two were also analyzed in inductively coupled plasma mass spectrometry. No significant difference was shown between the two methods by the Student's t-test. The method has also been used on-site for iron enrichment experiments with phytoplankton and concluded to be simple, accurate and inexpensive.展开更多
Underwater Acoustic Sensor Network(UASN) has attracted significant attention because of its great influence on ocean exploration and monitoring. On account of the unique characteristics of underwater environment, loca...Underwater Acoustic Sensor Network(UASN) has attracted significant attention because of its great influence on ocean exploration and monitoring. On account of the unique characteristics of underwater environment, localization, as one of the fundamental tasks in UASNs, is a more challenging work than in terrestrial sensor networks. A survey of the ranging algorithms and the network architectures varied with different applications in UASNs is provided in this paper. Algorithms used to estimate the coordinates of the UASNs nodes are classified into two categories: rangebased and range-free. In addition, we analyze the architectures of UASNs based on different applications, and compare their performances from the aspects of communication cost, accuracy, coverage and so on. Open research issues which would affect the accuracy of localization are also discussed, including MAC protocols, sound speed and time synchronization.展开更多
Hydrothermal fuid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid f...Hydrothermal fuid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid from deep reservoir. However, because of seawater's little contribution to the forming of chimneys, it is usually covered by the abundant matter which is taken by hydrothermal fluid. Therefore, chimneys formed in ordinary deep elements, cannot be used to study the seawater's seawater hydrothermal activity, containing complex contribution to their formation. While the native sulfur chimneys, formed by hydrothermal activity near the sea area off Kueishantao, are single sulfur composition (over 99%), and within chimneys distinct layers are seen. Different layers were sampled for trace element determination, with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). By analyzing the data, we consider C-layer (secondary inner-layer) as the framework layer of the chimney which formed early (Fig.4), and its trace elements derive from hydrothermal fluid. While the trace elements within A, B, D layers have undergone later alteration. A, B layers are affected by seawater and D layer by hydrothermal fluid. The increase of trace elements of A and B layers was calculated using C layer as background. Based on the known typical volume of chimneys of the near sea area off Kueishantao, we calculated the volume of seawater that contributed trace element to chimneys formation to be about 6.37×10^4 L. This simple quantified estimate may help us better understand the seafloor hydrothermal activity and chimneys.展开更多
文摘Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distribution pattern of uncertainty in measurement of seawater COD is obtained based on the measured results of the series of standard solutions by the potassium iodide-alkaline potassium permanganate determination method. The distribution pattern is as follows: Uncertainty in measurement is big and not constant at the high end, but small and constant at the low end.
文摘Radium isotopes 226Ra and 228Ra in seawater of the western Yellow Sea were measured by using the Mn-fiber adsorption - HPGe 7 spectrum method. The distribution features of the two isotopes have been studied. The activities of 226Ra and 228Ra are 2.72-5.57 Bq m^-3 and 7.51-34.3 Bq m^-3 respectively. The activities of 226Ra and 228Ra from surface to bottom for each depth profile station are comparable within the experimental error, but the mean activities decrease with distance from the shore. From the distribution data of 228Ra, the horizontal eddy diffusion coefficient was estimated at 29 × 10^6 cm^2 s^- 1.
基金Supported by the Natural Science Foundation of Jiangsu Province Youth Fund(No.BK2012073)the Science and Technology Plan Projects of Qufu Normal University(No.XKJ201404)the National Natural Science Foundation of China(Nos.31200400,31471884)
文摘It is difficult to determine the photosynthetic parameters of non-fiat leaves/green stems using photosynthetic instruments, due to the unusual morphology of both organs, especially for Suaeda salsa and Salicornia bigelovii as two seawater-tolerant vegetables. To solve the problem, we developed a simple, practical, and effective method to measure and calculate the photosynthetic parameters (such as PN, gs, E) based on unit fresh mass, instead of leaf area. The light/COftemperature response curves of the plants can also be measured by this method. This new method is more effective, stable, and reliable than conventional methods for plants with non-flat leaves. In addition, the relative notes on measurements and calculation of photosynthetic parameters were discussed in this paper. This method solves technical difficulties in photosynthetic parameter determination of the two seawater-tolerant vegetables and similar plants.
基金Supported by State Key Laboratory of Marine Environmental Science(MEL)Funds(No.MELRI1001)
文摘A novel method for on-site determination of trace iron was developed using membrane preconcentration and spectrophotometric detection. Fe(II)-ferrozine complex was reacted with cetyltrimethylammonium bromide (CTAB) to form a Fe(II)-ferrozine-CTAB paired compound, which was collected on a membrane by filtration under vacuum. The membrane was immersed in 2 mL of ethanol-nitric acid and the absorbance of the solution measured for quantitative analysis. Various factors affecting the iron collection and determination were investigated. With different sample preconcentration volumes, the range of determination was broadened to 0.5-120 ~tg/L. The detection limit of this method reached 0.19 ktg/L and the recoveries were between 97.2 and 109% when the concentration enrichment was about 45. The relative standard deviation (n = 7) was 1.9% for samples containing 10 ~g/L Fe. Twelve seawater samples were analyzed on-site using the proposed method, and two were also analyzed in inductively coupled plasma mass spectrometry. No significant difference was shown between the two methods by the Student's t-test. The method has also been used on-site for iron enrichment experiments with phytoplankton and concluded to be simple, accurate and inexpensive.
基金supported by National Natural Science Foundation of China under Grants 61001067,61371093and 61172105Natural Science Foundation of Zhejiang Prov.China under Grants LY13D060001
文摘Underwater Acoustic Sensor Network(UASN) has attracted significant attention because of its great influence on ocean exploration and monitoring. On account of the unique characteristics of underwater environment, localization, as one of the fundamental tasks in UASNs, is a more challenging work than in terrestrial sensor networks. A survey of the ranging algorithms and the network architectures varied with different applications in UASNs is provided in this paper. Algorithms used to estimate the coordinates of the UASNs nodes are classified into two categories: rangebased and range-free. In addition, we analyze the architectures of UASNs based on different applications, and compare their performances from the aspects of communication cost, accuracy, coverage and so on. Open research issues which would affect the accuracy of localization are also discussed, including MAC protocols, sound speed and time synchronization.
基金Supported by the Pilot Project of Knowledge Innovation Project, Chinese Academy of Sciences (No.KZCX2-YW-211and KZCX3-SW- 223)the National Natural Science Foundation of China (No. 40830849)the Special Foundation for the Eleventh Five-Year Plan of COMRA (No. DYXM-115-02-1-03).
文摘Hydrothermal fuid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid from deep reservoir. However, because of seawater's little contribution to the forming of chimneys, it is usually covered by the abundant matter which is taken by hydrothermal fluid. Therefore, chimneys formed in ordinary deep elements, cannot be used to study the seawater's seawater hydrothermal activity, containing complex contribution to their formation. While the native sulfur chimneys, formed by hydrothermal activity near the sea area off Kueishantao, are single sulfur composition (over 99%), and within chimneys distinct layers are seen. Different layers were sampled for trace element determination, with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). By analyzing the data, we consider C-layer (secondary inner-layer) as the framework layer of the chimney which formed early (Fig.4), and its trace elements derive from hydrothermal fluid. While the trace elements within A, B, D layers have undergone later alteration. A, B layers are affected by seawater and D layer by hydrothermal fluid. The increase of trace elements of A and B layers was calculated using C layer as background. Based on the known typical volume of chimneys of the near sea area off Kueishantao, we calculated the volume of seawater that contributed trace element to chimneys formation to be about 6.37×10^4 L. This simple quantified estimate may help us better understand the seafloor hydrothermal activity and chimneys.