This paper introduces the design and implementation of sea-water temperature auto-monitoring system based on General Packet Radio Service (GPRS). This system integrates modern wireless communication technology, the ...This paper introduces the design and implementation of sea-water temperature auto-monitoring system based on General Packet Radio Service (GPRS). This system integrates modern wireless communication technology, the signal gathering technology and computer network technology. MSC1210 microcontroller is used in data collection device in order to make system accurate and fast. In addition, wireless and Internet technologies are used for transferring and displaying collected field data. A prototype system has been completed and tested in field trials. The results proved the feasibility and usefulness of this system for monitoring the temperature. By using this system, a lot of resources and money can be saved.展开更多
Based on the temperature data along 34°N, 35°N and 36°N sections in August from 1977 to 2003,the structure and formation of the Southern Yellow Sea Cold Water Mass (SYSCWM) and its responses to El Nino ...Based on the temperature data along 34°N, 35°N and 36°N sections in August from 1977 to 2003,the structure and formation of the Southern Yellow Sea Cold Water Mass (SYSCWM) and its responses to El Nino events are analyzed. Results show that: (1) There exist double cold cores under the main thermocline along the 35°N and 36°N sections. Also, double warm cores exist above the main thermocline along the 36°N section.(2) Thermocline dome by upwelling separates the upper warm water into two parts, the eastern and western warm waters. Additionally, the circulation structure caused by upwelling along the cold front and northeastward current along the coast in summer is the main reasons of double warm cores along the 36°N section. The intermediate cold water is formed in early spring and moves eastward slowly, which results in the formation of the western one of double cold cores. (3) Position of the thermocline dome and its intensity vary interannually,which is related to El Nino events. However, the deep cold water temperature is hardly affected by El Nino events. In most El Nino years, position of the thermocline dome shifted eastwards and depth of the dome upper limit decreases.展开更多
Temperature data collected in the sections of 34°N, 35°N and 36°N in August from 1975 through2003 were analyzed using Empirical Orthogonal Function (EOF) to investigate interannual variability of the so...Temperature data collected in the sections of 34°N, 35°N and 36°N in August from 1975 through2003 were analyzed using Empirical Orthogonal Function (EOF) to investigate interannual variability of the southern Yellow Sea Cold Water Mass (YSCWM). The first mode (EOF1) reveals variations of basin-wide thermocline depth, which is mainly caused by surface heating. The second mode (EOF2) presents fluctuations of vertical circulation, resulting mainly from interannual variability of cold front intensity. In addition, it is found that the upward extent of upwelling in the cold front is basically determined by wind stress curl and the zonal position of the warm water center in the southern Yellow Sea is correlated with spatial difference of net heat flux.展开更多
文摘This paper introduces the design and implementation of sea-water temperature auto-monitoring system based on General Packet Radio Service (GPRS). This system integrates modern wireless communication technology, the signal gathering technology and computer network technology. MSC1210 microcontroller is used in data collection device in order to make system accurate and fast. In addition, wireless and Internet technologies are used for transferring and displaying collected field data. A prototype system has been completed and tested in field trials. The results proved the feasibility and usefulness of this system for monitoring the temperature. By using this system, a lot of resources and money can be saved.
文摘Based on the temperature data along 34°N, 35°N and 36°N sections in August from 1977 to 2003,the structure and formation of the Southern Yellow Sea Cold Water Mass (SYSCWM) and its responses to El Nino events are analyzed. Results show that: (1) There exist double cold cores under the main thermocline along the 35°N and 36°N sections. Also, double warm cores exist above the main thermocline along the 36°N section.(2) Thermocline dome by upwelling separates the upper warm water into two parts, the eastern and western warm waters. Additionally, the circulation structure caused by upwelling along the cold front and northeastward current along the coast in summer is the main reasons of double warm cores along the 36°N section. The intermediate cold water is formed in early spring and moves eastward slowly, which results in the formation of the western one of double cold cores. (3) Position of the thermocline dome and its intensity vary interannually,which is related to El Nino events. However, the deep cold water temperature is hardly affected by El Nino events. In most El Nino years, position of the thermocline dome shifted eastwards and depth of the dome upper limit decreases.
文摘Temperature data collected in the sections of 34°N, 35°N and 36°N in August from 1975 through2003 were analyzed using Empirical Orthogonal Function (EOF) to investigate interannual variability of the southern Yellow Sea Cold Water Mass (YSCWM). The first mode (EOF1) reveals variations of basin-wide thermocline depth, which is mainly caused by surface heating. The second mode (EOF2) presents fluctuations of vertical circulation, resulting mainly from interannual variability of cold front intensity. In addition, it is found that the upward extent of upwelling in the cold front is basically determined by wind stress curl and the zonal position of the warm water center in the southern Yellow Sea is correlated with spatial difference of net heat flux.