A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annua...A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annual transports through the four straits Luzon Strait, Taiwan Strait, Sunda Shelf and Mindoro Strait are -4.5, 2.3, 0.5 and 1.7 Sv (1 Sv=106 m3s-1), respectively. The Mindoro Strait has an important outflow that accounts for over one third of the total inflow through the Luzon Strait. Furthermore, it indicates that there are strong seasonal variations of water transport in the four straits. The water transport through the Luzon Strait (Taiwan Strait, Sunda Shelf, Mindoro Strait) has a maximum value of -7.6 Sv in December (3.1 Sv in July, 2.1S v in January, 4.5Sv in November), a minimum value of -2.1 Sv in June (1.5 Sv in October, -1.0 Sv in June, -0.2 Sv in May), respectively.展开更多
Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodel...Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.展开更多
In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis (FO) process. FO perfor...In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis (FO) process. FO performances including water flux and bidirectional transport of succinate and chloride anions were systematically examined using cellulose triacetate-based FO membrane. Additionally, real seawater was explored as draw solution. Experimental results revealed that the pH-dependent speciation of succinic acid can affect the FO performances. Ionization of succinic acid at higher solution pH enhanced the osmotic pressure of feed solution, thus leading to lower water flux performance. A strong effect was pointed out on the succinate rejection for which nearly 100% rejections were achieved at pH above its pKa2 value. The rejection of succinate increased in the following order of chemical form: C2H4C2O4H2 〈 C2H4C2OH- 〈 C2H4C2O24-. With real seawater as the draw solution, low to moderate water fluxes (〈4 L. m- 2. h- 1 ) were observed. The divalent succinate anion was highly retained in the feed side despite differences in the succinic acid feed concentration at pH of approximately 6.90.展开更多
The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of th...The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of temperature,salinity and density distributions are analyzed.The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation.The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer,and the flow is relatively weak and eastward in the deeper layer.The net volume transport of the Luzon Strait during the observation period is westward,amounts to about 3.25 Sv.This result is consistent with historical observations.展开更多
The velocity structure of the residual current across an entire section of the Qiongzhou Strait(QS) in summer is presented for the fi rst time. Shipboard Acoustic Doppler Current Profi le measurements, from the mid-re...The velocity structure of the residual current across an entire section of the Qiongzhou Strait(QS) in summer is presented for the fi rst time. Shipboard Acoustic Doppler Current Profi le measurements, from the mid-region of the QS(110.18°E), were collected on 1–4 August 2010. The diurnal tidal currents had their maximum amplitudes between 4.24 and 20.24 m. Their amplitude along the major axis ranged from approximately 0.55 m/s in the middle part of the strait(20.15°N) to 0.84 m/s in the north part of the strait(20.20°N). Both anticlockwise and clockwise tidal current rotations exist in the QS. During the observation period(neap tide), a signifi cant westward residual current occupied almost the entire study section. Two velocity cores of westward current were observed at the northern part and near the deepest trough, although an eastward current appeared in the middle part of the transect. The deepest core was located near 62 m at 20.13°N, with a maximum velocity of-0.34 m/s. The shallower core was located at approximately 16 m at 20.20°N, with a maximum velocity of-0.33 m/s. The estimated total volume of water transported through the QS was-0.16 Sv. This value is an important boundary condition, applicable to numerical models studying coastal ocean circulation in the northwestern South China Sea.展开更多
The pioneer technical policy carried out by Federal State Institution "Novorossiysk Maritime Port Administration" in mutual cooperation with the Southern Scientific Centre of Russian Academy of Sciences on control a...The pioneer technical policy carried out by Federal State Institution "Novorossiysk Maritime Port Administration" in mutual cooperation with the Southern Scientific Centre of Russian Academy of Sciences on control and management of ballast waters and ecosystem monitoring of marine environment in areas of ballast water discharge provides the task of complex approach for minimization of risk of introduction of biologically negative invaders by marine transport and preservation of biodiversity of the Black Sea.展开更多
Movement of sediment load and its pattern of transportation along nearshore coastal water is a very important phenomenon to be assessed for different sector of coastal Engineering. To develop and understand the physic...Movement of sediment load and its pattern of transportation along nearshore coastal water is a very important phenomenon to be assessed for different sector of coastal Engineering. To develop and understand the physical processes responsible for shaping the ongoing evolution of the coast and to develop the management strategies to deal the impact of human activities on the coastal zone and as well as for adapting to the hazards associated with the people living on the coast, knowledge of the mechanism, processes and the pattern of sediment movement in the nearshore zone is of utmost importance. Nearshore zone is a very active area, where a series of dynamic processes occur in response to changing wave climates and sediment budgets. Nowadays mathematical modeling is an attractive alternative and becoming a very viable approach to study the sediment movement pattern with the advanced computational facilities and improved understanding on wave mechanics and sediment transport processes. It is very effective, reliable and also comfortable to study the pattern of sediment transportation including yield, distribution and management of sediment with the help of mathematical model. Validity of forecast in sediment transport depends on both mathematical modeling technique and boundary conditions.展开更多
基金Supported by National Natural Science Foundation of China (No. 40806012, 40876013)Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences (No. KLOCAW0803)Scientific Research Foundation for talent, Guangdong Ocean University (No. E06118)
文摘A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annual transports through the four straits Luzon Strait, Taiwan Strait, Sunda Shelf and Mindoro Strait are -4.5, 2.3, 0.5 and 1.7 Sv (1 Sv=106 m3s-1), respectively. The Mindoro Strait has an important outflow that accounts for over one third of the total inflow through the Luzon Strait. Furthermore, it indicates that there are strong seasonal variations of water transport in the four straits. The water transport through the Luzon Strait (Taiwan Strait, Sunda Shelf, Mindoro Strait) has a maximum value of -7.6 Sv in December (3.1 Sv in July, 2.1S v in January, 4.5Sv in November), a minimum value of -2.1 Sv in June (1.5 Sv in October, -1.0 Sv in June, -0.2 Sv in May), respectively.
基金Supported by the 12th Five-Year Project of Science and Technology of China National Offshore Oil Corporation “Development of Underwater Oil Spill Numerical Simulation in Deep Water”(No.CNOOC-KJ 125 ZDXM 00 000 00 NFCY 2011-03)
文摘Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.
基金the financial support for this work provided by the LRGS/2013/UKM-UKM/PT/03 grant from the Ministry of Education Malaysia
文摘In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis (FO) process. FO performances including water flux and bidirectional transport of succinate and chloride anions were systematically examined using cellulose triacetate-based FO membrane. Additionally, real seawater was explored as draw solution. Experimental results revealed that the pH-dependent speciation of succinic acid can affect the FO performances. Ionization of succinic acid at higher solution pH enhanced the osmotic pressure of feed solution, thus leading to lower water flux performance. A strong effect was pointed out on the succinate rejection for which nearly 100% rejections were achieved at pH above its pKa2 value. The rejection of succinate increased in the following order of chemical form: C2H4C2O4H2 〈 C2H4C2OH- 〈 C2H4C2O24-. With real seawater as the draw solution, low to moderate water fluxes (〈4 L. m- 2. h- 1 ) were observed. The divalent succinate anion was highly retained in the feed side despite differences in the succinic acid feed concentration at pH of approximately 6.90.
基金Supported by the Knowledge Innovation Project of CAS (No KZCX2-YW-214,the NSFC (No 40806010)the National Basic Research Program of China (973 Program) (No 403603)
文摘The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of temperature,salinity and density distributions are analyzed.The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation.The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer,and the flow is relatively weak and eastward in the deeper layer.The net volume transport of the Luzon Strait during the observation period is westward,amounts to about 3.25 Sv.This result is consistent with historical observations.
基金Supported by the National Natural Science Foundation for Young Scientists of China(No.40806012)
文摘The velocity structure of the residual current across an entire section of the Qiongzhou Strait(QS) in summer is presented for the fi rst time. Shipboard Acoustic Doppler Current Profi le measurements, from the mid-region of the QS(110.18°E), were collected on 1–4 August 2010. The diurnal tidal currents had their maximum amplitudes between 4.24 and 20.24 m. Their amplitude along the major axis ranged from approximately 0.55 m/s in the middle part of the strait(20.15°N) to 0.84 m/s in the north part of the strait(20.20°N). Both anticlockwise and clockwise tidal current rotations exist in the QS. During the observation period(neap tide), a signifi cant westward residual current occupied almost the entire study section. Two velocity cores of westward current were observed at the northern part and near the deepest trough, although an eastward current appeared in the middle part of the transect. The deepest core was located near 62 m at 20.13°N, with a maximum velocity of-0.34 m/s. The shallower core was located at approximately 16 m at 20.20°N, with a maximum velocity of-0.33 m/s. The estimated total volume of water transported through the QS was-0.16 Sv. This value is an important boundary condition, applicable to numerical models studying coastal ocean circulation in the northwestern South China Sea.
文摘The pioneer technical policy carried out by Federal State Institution "Novorossiysk Maritime Port Administration" in mutual cooperation with the Southern Scientific Centre of Russian Academy of Sciences on control and management of ballast waters and ecosystem monitoring of marine environment in areas of ballast water discharge provides the task of complex approach for minimization of risk of introduction of biologically negative invaders by marine transport and preservation of biodiversity of the Black Sea.
文摘Movement of sediment load and its pattern of transportation along nearshore coastal water is a very important phenomenon to be assessed for different sector of coastal Engineering. To develop and understand the physical processes responsible for shaping the ongoing evolution of the coast and to develop the management strategies to deal the impact of human activities on the coastal zone and as well as for adapting to the hazards associated with the people living on the coast, knowledge of the mechanism, processes and the pattern of sediment movement in the nearshore zone is of utmost importance. Nearshore zone is a very active area, where a series of dynamic processes occur in response to changing wave climates and sediment budgets. Nowadays mathematical modeling is an attractive alternative and becoming a very viable approach to study the sediment movement pattern with the advanced computational facilities and improved understanding on wave mechanics and sediment transport processes. It is very effective, reliable and also comfortable to study the pattern of sediment transportation including yield, distribution and management of sediment with the help of mathematical model. Validity of forecast in sediment transport depends on both mathematical modeling technique and boundary conditions.