[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflo...[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflora in Mangroves conservation zone located at Hepu of Guangxi being taken as experimental material, its morphological and quantitative characteristics, as well as the weight of 100 full seeds at maturity stage in three different growth conditions( clay, loam and sand) were studied. [ Results] The results showed that Spartina alterniflora had the best growth pattern in the loam. The morphological factors of fructification of S. altemiflora grown in sand were larger then in others. In the three growth conditions the order of quantitative characteristics of fructification of S. alterniflora was clay 〉 sand 〉 loam and the seeds in spikelet at top position were more maturity than those at the button position. [ Conclusion] In good condition, the Spartina altemiflora growth was vigor but the ratio of seed-setting was low.展开更多
We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(S...We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.展开更多
Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipi...Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale.Corresponding to years of more or less precipitation in the raining season,there are sharply opposite distribution across the nation in the simultaneous periods.In addition,by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~August of the previous year),a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season.Discussions are also made of the sensitive period,its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China.In the last part of the work,relationship between the SSTA in the sensitive zone and global SSTA is analyzed.A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward.展开更多
Trends in temperature and precipitation extremes from 1961 to 2008 have been investigated over Circum-Bohai-Sea region, China using daily temperature and precipitation data of 63 meteorological stations. The re- suits...Trends in temperature and precipitation extremes from 1961 to 2008 have been investigated over Circum-Bohai-Sea region, China using daily temperature and precipitation data of 63 meteorological stations. The re- suits show that at most stations, there is a significant increase in the annual frequency of warm days and warm nights, as well as a significant decrease in the annual frequency of cold days, cold nights, frost days, and annual diurnal tem- perature range (DTR). Their regional averaged changes are 2.06 d/1 0yr, 3.95 d/10yr, -1.88 d/10yr, -4.27 d/10yr, -4.21 d/10yr and -0.20℃/10yr, respectively. Seasonal changes display similar patterns to the annual results, but there is a large seasonal difference. A significant warming trend is detected at both annual and seasonal scales, which is more contributed by changes of indices defined by daily minimum temperature than those defined by daily maximum tem- perature. For precipitation indices, the regional annual extreme precipitation displays a weak decrease in terms of magnitude and frequency, i.e. extreme precipitation days (RD95p), intensity (RINTEN), proportion (RPROP) and maximum consecutive wet days (CWD), but a slight increase in the maximum consecutive dry days (CDD), which are consistent with changes of annual total precipitation (PRCPTOT). Seasonally, PRCPTOT and RD95p both exhibit an increase in spring and a decrease in other seasons with the largest decrease in summer, but generally not significant. In summary, this study shows a pronounced warming tendency at the less rainy period over Circum-Bohai-Sea region, which may affect regional economic development and ecological protection to some extent.展开更多
The characteristics of heavy precipitation occurrence in autumn(the month of September) over North China are investigated using daily observational data.Results indicate that heavy precipitation events experienced a...The characteristics of heavy precipitation occurrence in autumn(the month of September) over North China are investigated using daily observational data.Results indicate that heavy precipitation events experienced a significant decadal increase in 2000/2001.Further investigation reveals a close connection between heavy precipitation occurrence and simultaneous North Pacific SST.The SST anomaly over the North Pacific can result in intensification of the western North Pacific subtropical high and increased water vapor transport from the tropical ocean,which benefits the occurrence of heavy precipitation over North China.However,the key region of North Pacific SST influencing heavy precipitation events over North China was different in the periods 1960-2000 and 2001-2014,being located over the eastern Ocean to China in the first period but more eastward in the second period.This drift in the key region of SST is partly responsible for the decadal increase in heavy precipitation events over North China since 2000/2001.Additionally,the changes in SST variability(a decrease in the eastern Ocean to China and an increase to its east) may have been the main reason for the eastward movement of the key region in the latter period.Certainly,more work is needed in the future to verify the findings of this study.展开更多
The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole ind...The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole index of March~May, in the eastern and western parts of the ocean correlates well with the precipitation during the June~August raining season in China. As shown in analysis of 500-hPa Northern Hemisphere geopotential height height by NCEP for 1958~1995, the Indian Ocean dipole index (IODI) is closely related with geopotential height anomalies in the middle- and higher- latitudes in the Eurasian region. As a negative phase year of IODI corresponds to significant Pacific-Japan (P J) wavetrain, it is highly likely that the SST for the dipole may affect the precipitation in China through the wavetrain. Additionally, correlation analysis of links between SST dipole index of the Indian Ocean region and air temperature in China also shows good correlation between the former and wintertime temperature in southern China.展开更多
Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,includ...Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.展开更多
Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential heigh...Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential height field, outgoing longwave radiation (OLR) field, sea surface temperature (SST) and fourteen indexes of general circulation depicting atmosphere activity at high, middle and low latitutes. Being multiple tools of information, a number of conceptual models are formulated that are useful for prediction of the magnitude of monthly precipitation (drought, flood and normal conditionss).展开更多
North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate an...North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate and agricultural production in North China.Based on observed and reanalysis data from 1979 to 2021,a significant relationship between NCMP and both the April Indian Ocean sea surface temperature(IOSST)and Northwest Pacific Dipole(NWPD)was found,indicating that there may be a link between them.This link,and the possible physical mechanisms by which the IOSST and NWPD in April affect NCMP anomalies,are discussed.Results show that positive(negative)IOSST and NWPD anomalies in April can enhance(weaken)the water vapor transport from the Indian Ocean and Northwest Pacific to North China by influencing the related atmospheric circulation,and thus enhance(weaken)the May precipitation in North China.Accordingly,an NCMP prediction model based on April IOSST and NWPD is established.The model can predict the annual NCMP anomalies effectively,indicating it has the potential to be applied in operational climate prediction.展开更多
This study examined the impact of the preceding boreal summer(June–August) North Atlantic Oscillation(NAO) on early autumn(September) rainfall over Central China(RCC). The results show that a significant positive cor...This study examined the impact of the preceding boreal summer(June–August) North Atlantic Oscillation(NAO) on early autumn(September) rainfall over Central China(RCC). The results show that a significant positive correlation exists between the preceding summer NAO and the early autumn RCC on the interannual timescale. In order to understand the physical mechanism between them, the role of ocean was investigated. It was found that the strong summer NAO can induce a tripole sea surface temperature anomaly(SSTA) in the North Atlantic; this SSTA pattern can persist until early autumn. The diagnostic analysis showed that the tripole SSTA pattern excites a downstream Atlantic-Eurasian(AEA) teleconnection, which contributes to an increase in RCC. The circulation anomalies related to SSTA caused by the weak NAO are opposite, so the RCC is less than normal. The results imply that the preceding summer NAO may be regarded as a forecast factor for the early autumn RCC.展开更多
The drying trend in the South Asian summer monsoon(SASM)area has been a focus of monsoon rainfall studies in the last two decades.However,this study reveals that a signi cant interdecadal change in the SASM rainfall o...The drying trend in the South Asian summer monsoon(SASM)area has been a focus of monsoon rainfall studies in the last two decades.However,this study reveals that a signi cant interdecadal change in the SASM rainfall occurred in approximately the year 2000.Obvious spatial inhomo-geneity was a feature of this change,with increased rainfall over the southern part of the India Pakistan border area that extends from the Arabian Sea,as well as in the western Bay of Bengal.Furthermore,there was decreased rainfall over the southern SASM and the western coast of the Indian Peninsula.Numerical experiments using CAM4 show that global SST changes can induce general changes in the SASM circulation consistent with observations.The tropical Pacific/Indian Ocean SST anomalies dominated the Walker and the regional Hadley circulation changes,respectively,while the descending motion anomalies over the southern SASM were further enhanced by the warmer tropical Atlantic SSTs.Moreover,the spatial inhomogeneity of this interdecadal change in the SASM rainfall needs further study.展开更多
There are numerous lakes on the Tibetan Plateau(TP),but the role of lake temperature in precipitation over the TP remains unclear.Here the Weather Research and Forecasting(WRF) model was used to detect the impact of l...There are numerous lakes on the Tibetan Plateau(TP),but the role of lake temperature in precipitation over the TP remains unclear.Here the Weather Research and Forecasting(WRF) model was used to detect the impact of lakes on summer rainfall.Three test cases were used to evaluate the effect of lakes surface temperature(LSTs) on precipitation variability.The three cases used different methods to determine initial LSTs,including using sea surface temperature data(SST),the WRF inland water module(avg_tsfc),and a lake model.Results show that when precipitation was stimulated over the TP,LSTs cannot be initialized using SST,which led to large discrepancies of precipitation.Compared with the simulations,the simulated precipitation were improved obviously with LSTs using avg_tsfc,indicating that LSTs have an considerable influence on determining precipitation over the TP.Due to a lack of observational data,the lake scheme does not improve on rainfall simulation,but does effectively simulate precipitation pattern over lakes,such as rainfall over the lakes was dominated by convection during the nighttime.Though the simulated precipitation using SST to initialize LSTs caused largediscrepancies,it suggested that precipitation increase especially convective precipitation with increase in LSTs,which confirmed that the moisture from lakes cannot be neglected over the TP.Generally,it was necessary to monitor the LSTs for accurate weather and climate prediction over the TP.展开更多
In this study,the temporal and spatial variations of observed global oceanic precipitation during 1979-2010 are investigated.It is found that the global trend in precipitation during this period varies at a rate of 1....In this study,the temporal and spatial variations of observed global oceanic precipitation during 1979-2010 are investigated.It is found that the global trend in precipitation during this period varies at a rate of 1.5%/K of surface warming while the rate is 6.6%/K during 2006-2010.The precipitation is highly correlated with Sea Surface Temperature (SST) in both the temporal and the spatial patterns since the strong 1997-98 E1 Ni(n)o event.Considering the distributions of precipitation and SST,seven oceanic regions are classified and presented using the observed Global Precipitation Climatology Project (GPCP) data and Extended Reconstructed Sea Surface Temperatures,version 3 (ERSST.v3) data.Further examining the mechanisms of the classified oceanic precipitation regions is conducted using the Tropical Rainfall Measuring Mission (TRMM) satellite,GFDL-ESM-2G model precipitation and SST data and Hadley Center sea ice and SST version 1 (HadISST1) data.More than 85% of global oceanic precipitations are controlled by either one or both of the warmer-get-wetter mechanism and wet-get-wetter mechanism.It is estimated that a 0.5 SST signal-to-noise ratio,representing the trend of SST time series to the standard deviation,is a criterion to distinguish the mechanism of a region.When the SST ratio is larger than 0.5,the precipitation of this region is controlled by the warmer-get-wetter mechanism.SST,rather than the humidity,is the pivotal factor.On the other hand,when the SST ratio is less than 0.5,the precipitation is controlled by the wet-get-wetter mechanism.The SST variability is a significant factor contributing to the precipitation variation.展开更多
基金Supported by the National Natural Science Foundation of China(30660036 )the Natural Science Foundation of Guangxi Province(0728096) Project of Graduate Student Education Innovation ofGuangxi (2008106020907M266)~~
文摘[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflora in Mangroves conservation zone located at Hepu of Guangxi being taken as experimental material, its morphological and quantitative characteristics, as well as the weight of 100 full seeds at maturity stage in three different growth conditions( clay, loam and sand) were studied. [ Results] The results showed that Spartina alterniflora had the best growth pattern in the loam. The morphological factors of fructification of S. altemiflora grown in sand were larger then in others. In the three growth conditions the order of quantitative characteristics of fructification of S. alterniflora was clay 〉 sand 〉 loam and the seeds in spikelet at top position were more maturity than those at the button position. [ Conclusion] In good condition, the Spartina altemiflora growth was vigor but the ratio of seed-setting was low.
基金supported by Innovation and Research Foundation of Ocean University of China(No.201261009)the National Natural Science Foundation of China(Nos.40930844 and 10735030)the National Basic Research Program of China(the 973 Program)under grant No.2005CB422 301
文摘We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.
文摘Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale.Corresponding to years of more or less precipitation in the raining season,there are sharply opposite distribution across the nation in the simultaneous periods.In addition,by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~August of the previous year),a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season.Discussions are also made of the sensitive period,its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China.In the last part of the work,relationship between the SSTA in the sensitive zone and global SSTA is analyzed.A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward.
基金Under the auspices of National Natural Science Foundation of China (No.40901028)
文摘Trends in temperature and precipitation extremes from 1961 to 2008 have been investigated over Circum-Bohai-Sea region, China using daily temperature and precipitation data of 63 meteorological stations. The re- suits show that at most stations, there is a significant increase in the annual frequency of warm days and warm nights, as well as a significant decrease in the annual frequency of cold days, cold nights, frost days, and annual diurnal tem- perature range (DTR). Their regional averaged changes are 2.06 d/1 0yr, 3.95 d/10yr, -1.88 d/10yr, -4.27 d/10yr, -4.21 d/10yr and -0.20℃/10yr, respectively. Seasonal changes display similar patterns to the annual results, but there is a large seasonal difference. A significant warming trend is detected at both annual and seasonal scales, which is more contributed by changes of indices defined by daily minimum temperature than those defined by daily maximum tem- perature. For precipitation indices, the regional annual extreme precipitation displays a weak decrease in terms of magnitude and frequency, i.e. extreme precipitation days (RD95p), intensity (RINTEN), proportion (RPROP) and maximum consecutive wet days (CWD), but a slight increase in the maximum consecutive dry days (CDD), which are consistent with changes of annual total precipitation (PRCPTOT). Seasonally, PRCPTOT and RD95p both exhibit an increase in spring and a decrease in other seasons with the largest decrease in summer, but generally not significant. In summary, this study shows a pronounced warming tendency at the less rainy period over Circum-Bohai-Sea region, which may affect regional economic development and ecological protection to some extent.
基金jointly supported by the National Natural Science Foundation of China[grant numbers 41305061 and41210007]the CAS-PKU(Chinese Academy of Sciences-Peking University)Joint Research Program
文摘The characteristics of heavy precipitation occurrence in autumn(the month of September) over North China are investigated using daily observational data.Results indicate that heavy precipitation events experienced a significant decadal increase in 2000/2001.Further investigation reveals a close connection between heavy precipitation occurrence and simultaneous North Pacific SST.The SST anomaly over the North Pacific can result in intensification of the western North Pacific subtropical high and increased water vapor transport from the tropical ocean,which benefits the occurrence of heavy precipitation over North China.However,the key region of North Pacific SST influencing heavy precipitation events over North China was different in the periods 1960-2000 and 2001-2014,being located over the eastern Ocean to China in the first period but more eastward in the second period.This drift in the key region of SST is partly responsible for the decadal increase in heavy precipitation events over North China since 2000/2001.Additionally,the changes in SST variability(a decrease in the eastern Ocean to China and an increase to its east) may have been the main reason for the eastward movement of the key region in the latter period.Certainly,more work is needed in the future to verify the findings of this study.
基金Research on the Mechanism and Prediction of Major Climatic Calamities in China a national key program for developing basic science (G199804090303) Science Foundation of Yunnan (97D022G)
文摘The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole index of March~May, in the eastern and western parts of the ocean correlates well with the precipitation during the June~August raining season in China. As shown in analysis of 500-hPa Northern Hemisphere geopotential height height by NCEP for 1958~1995, the Indian Ocean dipole index (IODI) is closely related with geopotential height anomalies in the middle- and higher- latitudes in the Eurasian region. As a negative phase year of IODI corresponds to significant Pacific-Japan (P J) wavetrain, it is highly likely that the SST for the dipole may affect the precipitation in China through the wavetrain. Additionally, correlation analysis of links between SST dipole index of the Indian Ocean region and air temperature in China also shows good correlation between the former and wintertime temperature in southern China.
基金supported by the National Basic Research Program of China under Grants 2010CB950304 and 2009CB421406the Special Fund for the public welfare indus-try (Meteorology) under Grant GYHY200906018+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant KZCX2-YW-QN202the Chinese Academy of Sciences under Grants KZCX2-YW-Q1-02 and KZCX2-YW-Q11-00
文摘Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.
基金Short-term Climate Prediction Study for Guangdong Province a key project of Guangdong Science and Technology Committee in the national 9th five-year economic development plan Research on Long-term Tendency Prediction System for Floods/Drought and Typh
文摘Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential height field, outgoing longwave radiation (OLR) field, sea surface temperature (SST) and fourteen indexes of general circulation depicting atmosphere activity at high, middle and low latitutes. Being multiple tools of information, a number of conceptual models are formulated that are useful for prediction of the magnitude of monthly precipitation (drought, flood and normal conditionss).
基金This work was supported by the National Natural Science Foundation of China[grant number 41975088].
文摘North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate and agricultural production in North China.Based on observed and reanalysis data from 1979 to 2021,a significant relationship between NCMP and both the April Indian Ocean sea surface temperature(IOSST)and Northwest Pacific Dipole(NWPD)was found,indicating that there may be a link between them.This link,and the possible physical mechanisms by which the IOSST and NWPD in April affect NCMP anomalies,are discussed.Results show that positive(negative)IOSST and NWPD anomalies in April can enhance(weaken)the water vapor transport from the Indian Ocean and Northwest Pacific to North China by influencing the related atmospheric circulation,and thus enhance(weaken)the May precipitation in North China.Accordingly,an NCMP prediction model based on April IOSST and NWPD is established.The model can predict the annual NCMP anomalies effectively,indicating it has the potential to be applied in operational climate prediction.
基金supported jointly by the National Basic Research Program of China(973 program,Grant No.2013CB340203)the National Natural Science Foundation of China(NSFC)(Grant Nos.41290255 and 41205046)
文摘This study examined the impact of the preceding boreal summer(June–August) North Atlantic Oscillation(NAO) on early autumn(September) rainfall over Central China(RCC). The results show that a significant positive correlation exists between the preceding summer NAO and the early autumn RCC on the interannual timescale. In order to understand the physical mechanism between them, the role of ocean was investigated. It was found that the strong summer NAO can induce a tripole sea surface temperature anomaly(SSTA) in the North Atlantic; this SSTA pattern can persist until early autumn. The diagnostic analysis showed that the tripole SSTA pattern excites a downstream Atlantic-Eurasian(AEA) teleconnection, which contributes to an increase in RCC. The circulation anomalies related to SSTA caused by the weak NAO are opposite, so the RCC is less than normal. The results imply that the preceding summer NAO may be regarded as a forecast factor for the early autumn RCC.
基金supported by the National Key Research and Development Program of China [grant number2017YFC1502304]the National Natural Science Foundation of China [grant numbers 41675083 and 41522503]the Chinese Academy of Sciences–Peking University Joint Research Program
文摘The drying trend in the South Asian summer monsoon(SASM)area has been a focus of monsoon rainfall studies in the last two decades.However,this study reveals that a signi cant interdecadal change in the SASM rainfall occurred in approximately the year 2000.Obvious spatial inhomo-geneity was a feature of this change,with increased rainfall over the southern part of the India Pakistan border area that extends from the Arabian Sea,as well as in the western Bay of Bengal.Furthermore,there was decreased rainfall over the southern SASM and the western coast of the Indian Peninsula.Numerical experiments using CAM4 show that global SST changes can induce general changes in the SASM circulation consistent with observations.The tropical Pacific/Indian Ocean SST anomalies dominated the Walker and the regional Hadley circulation changes,respectively,while the descending motion anomalies over the southern SASM were further enhanced by the warmer tropical Atlantic SSTs.Moreover,the spatial inhomogeneity of this interdecadal change in the SASM rainfall needs further study.
基金The National Natural Science Foundation of China(Grant Nos.41401226 and 41190080)the China Postdoctoral Science Foundation(Grant No.2015M570865) joint support this work
文摘There are numerous lakes on the Tibetan Plateau(TP),but the role of lake temperature in precipitation over the TP remains unclear.Here the Weather Research and Forecasting(WRF) model was used to detect the impact of lakes on summer rainfall.Three test cases were used to evaluate the effect of lakes surface temperature(LSTs) on precipitation variability.The three cases used different methods to determine initial LSTs,including using sea surface temperature data(SST),the WRF inland water module(avg_tsfc),and a lake model.Results show that when precipitation was stimulated over the TP,LSTs cannot be initialized using SST,which led to large discrepancies of precipitation.Compared with the simulations,the simulated precipitation were improved obviously with LSTs using avg_tsfc,indicating that LSTs have an considerable influence on determining precipitation over the TP.Due to a lack of observational data,the lake scheme does not improve on rainfall simulation,but does effectively simulate precipitation pattern over lakes,such as rainfall over the lakes was dominated by convection during the nighttime.Though the simulated precipitation using SST to initialize LSTs caused largediscrepancies,it suggested that precipitation increase especially convective precipitation with increase in LSTs,which confirmed that the moisture from lakes cannot be neglected over the TP.Generally,it was necessary to monitor the LSTs for accurate weather and climate prediction over the TP.
基金supported by the National Basic Research Program of China (2012CB955603)the Natural Science Foundation of China (41076115)Basic Scientific Research Operating Expenses of Ocean University of China
文摘In this study,the temporal and spatial variations of observed global oceanic precipitation during 1979-2010 are investigated.It is found that the global trend in precipitation during this period varies at a rate of 1.5%/K of surface warming while the rate is 6.6%/K during 2006-2010.The precipitation is highly correlated with Sea Surface Temperature (SST) in both the temporal and the spatial patterns since the strong 1997-98 E1 Ni(n)o event.Considering the distributions of precipitation and SST,seven oceanic regions are classified and presented using the observed Global Precipitation Climatology Project (GPCP) data and Extended Reconstructed Sea Surface Temperatures,version 3 (ERSST.v3) data.Further examining the mechanisms of the classified oceanic precipitation regions is conducted using the Tropical Rainfall Measuring Mission (TRMM) satellite,GFDL-ESM-2G model precipitation and SST data and Hadley Center sea ice and SST version 1 (HadISST1) data.More than 85% of global oceanic precipitations are controlled by either one or both of the warmer-get-wetter mechanism and wet-get-wetter mechanism.It is estimated that a 0.5 SST signal-to-noise ratio,representing the trend of SST time series to the standard deviation,is a criterion to distinguish the mechanism of a region.When the SST ratio is larger than 0.5,the precipitation of this region is controlled by the warmer-get-wetter mechanism.SST,rather than the humidity,is the pivotal factor.On the other hand,when the SST ratio is less than 0.5,the precipitation is controlled by the wet-get-wetter mechanism.The SST variability is a significant factor contributing to the precipitation variation.