In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an expo...In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.展开更多
A simplified parameter identification algorithm for the inverse refractive indexes of the mesoscale eddy and the internal wave in the ocean is proposed by researching into the incident field and the scattered field th...A simplified parameter identification algorithm for the inverse refractive indexes of the mesoscale eddy and the internal wave in the ocean is proposed by researching into the incident field and the scattered field that comprise the total field of a wave in the ocean, considering that the total field and the incident field satisfy the Helmholtz equations and the scattered field conforms to the Sommerfield radiation condition. Two examples for the calculation of refractive index and inverse refractive index respectively of the mesoscale eddy and the internal wave demonstrate the applicability of the algorithm.展开更多
基金supported by the Key Project of National Natural Science Foundation of China under Grant No.40730842the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No.KZCX2-YW-201the Postdoctoral Special Fund for the Innovation Program of the Shandong Province
文摘In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
文摘A simplified parameter identification algorithm for the inverse refractive indexes of the mesoscale eddy and the internal wave in the ocean is proposed by researching into the incident field and the scattered field that comprise the total field of a wave in the ocean, considering that the total field and the incident field satisfy the Helmholtz equations and the scattered field conforms to the Sommerfield radiation condition. Two examples for the calculation of refractive index and inverse refractive index respectively of the mesoscale eddy and the internal wave demonstrate the applicability of the algorithm.