With correlation analysis and factor analysis methods, the effects of preceding Pacific SSTs on subtropical high indexes of main raining seasons are discussed. The results of correlation analysis show that the effects...With correlation analysis and factor analysis methods, the effects of preceding Pacific SSTs on subtropical high indexes of main raining seasons are discussed. The results of correlation analysis show that the effects of SSTs on five subtropical high indexes differ in seasons and regions. The variation of SSTs mostly affects the area and intensity indexes of the subtropical high, followed by the western ridge index, and the effect on the ridge line index is more remarkable than on the north boundary index. The results of factor analysis reveals that the first common factor of SST of each season reflected mainly the inverse relation of SSTs variation between the central and eastern part of equatorial Pacific and the western Pacific, which correlates better with the subtropical high indexes in the main raining seasons than other common factors of SST. The analysis of interdecadal variation indicated that the variation of SSTs was conducive to the emergence of the La Ni?a event before the end of 1970s, such that in the summer the subtropical high is likely to be weaker and smaller and located eastward and northward. After the 1980s, the opposite characteristics prevailed.展开更多
A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation(ADCIRC) model for s...A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation(ADCIRC) model for simulating the associated storm surge with a 200 m resolution along the Qingdao coastline. The system was validated by an extreme surge event Typhoon Mamie(8509) and the parameters of Typhoon Mamie were used to investigate the sensitivity of typhoon paths to Qingdao storm surges with four selected paths: the paths of Typhoons Mamie(8509), Opal, 3921 and 2413, the selection being made according to their relative position to Qingdao. Experiments based on the Typhoon Mamie(8509) storm surge were also conducted to study the possible influences of future climate changes, including the sea level rise and sea surface temperature(SST) rise, on storm surges along the Qingdao coast. Storm surge conditions under both present day and future(the end of the 21 st century) climate scenarios associated with the four selected paths were simulated. The results show that with the same intensity, when typhoons follow the paths of 3921 and 2413, they would lead to the most serious disasters in different areas of Qingdao. Sea level and SST affect storm surges in different ways: sea level rise affects storm surge mainly through its influence on the tide amplitude, while the increased SST has direct impact on the intensity of the surges. The possible maximum risk of storm surges in 2100 in the Qingdao area caused by typhoons like Mamie(8509) was also estimated in this study.展开更多
文摘With correlation analysis and factor analysis methods, the effects of preceding Pacific SSTs on subtropical high indexes of main raining seasons are discussed. The results of correlation analysis show that the effects of SSTs on five subtropical high indexes differ in seasons and regions. The variation of SSTs mostly affects the area and intensity indexes of the subtropical high, followed by the western ridge index, and the effect on the ridge line index is more remarkable than on the north boundary index. The results of factor analysis reveals that the first common factor of SST of each season reflected mainly the inverse relation of SSTs variation between the central and eastern part of equatorial Pacific and the western Pacific, which correlates better with the subtropical high indexes in the main raining seasons than other common factors of SST. The analysis of interdecadal variation indicated that the variation of SSTs was conducive to the emergence of the La Ni?a event before the end of 1970s, such that in the summer the subtropical high is likely to be weaker and smaller and located eastward and northward. After the 1980s, the opposite characteristics prevailed.
基金supported by the Marine Industry Research Special Funds for Public Welfare Projects (No. 200905013)
文摘A typhoon-induced storm surge simulation system was developed for the Qingdao area, including a typhoon diagnostic model for the generation of wind and pressure fields and a 2D Advanced Circulation(ADCIRC) model for simulating the associated storm surge with a 200 m resolution along the Qingdao coastline. The system was validated by an extreme surge event Typhoon Mamie(8509) and the parameters of Typhoon Mamie were used to investigate the sensitivity of typhoon paths to Qingdao storm surges with four selected paths: the paths of Typhoons Mamie(8509), Opal, 3921 and 2413, the selection being made according to their relative position to Qingdao. Experiments based on the Typhoon Mamie(8509) storm surge were also conducted to study the possible influences of future climate changes, including the sea level rise and sea surface temperature(SST) rise, on storm surges along the Qingdao coast. Storm surge conditions under both present day and future(the end of the 21 st century) climate scenarios associated with the four selected paths were simulated. The results show that with the same intensity, when typhoons follow the paths of 3921 and 2413, they would lead to the most serious disasters in different areas of Qingdao. Sea level and SST affect storm surges in different ways: sea level rise affects storm surge mainly through its influence on the tide amplitude, while the increased SST has direct impact on the intensity of the surges. The possible maximum risk of storm surges in 2100 in the Qingdao area caused by typhoons like Mamie(8509) was also estimated in this study.