期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv9c的海洋垃圾检测研究
1
作者 韩志银 刘晓群 郝娟 《长江信息通信》 2024年第8期28-30,共3页
为了提高解决海洋垃圾问题的效率,保护海洋环境。文章提出了一种基于改进YOLOv9c的的海洋垃圾检测算法的研究。由于海洋垃圾浮游于海中,受较暗光线以及海水颜色的影响较难检测识别,在预处理时对数据进行色彩增强与图像增亮的处理,提高... 为了提高解决海洋垃圾问题的效率,保护海洋环境。文章提出了一种基于改进YOLOv9c的的海洋垃圾检测算法的研究。由于海洋垃圾浮游于海中,受较暗光线以及海水颜色的影响较难检测识别,在预处理时对数据进行色彩增强与图像增亮的处理,提高了图像的辨识度。并采用最新的YOLOv9c作为目标检测的骨干网络,引入Squeeze and Excitation注意力机制,提高了特征的敏感度,增强了网络的泛化能力和效率。并且将下采样替换为基于Haar小波下采样,在降低特征图的同时尽可能保留更多的信息,提高处理的效率。经训练后,在J-EDI海洋垃圾数据集上进行验证,其mAP达到了70.5%,模型的参数也只有12.5M,FPS为75。表明改进后的算法有较好的效果。 展开更多
关键词 海洋垃圾检测 YOLOv9 目标检测 注意力机制
下载PDF
海洋环境下基于增强YOLOv7的垃圾目标检测
2
作者 廖辰津 《电子技术应用》 2024年第6期66-70,共5页
针对海洋垃圾识别任务在实际应用中模型准确率不高的问题,提出一种基于优化YOLOv7的海洋垃圾识别算法。在图像增强部分,基于概率UIE的框架,通过添加eSE注意力减少特征信息的丢失。在损失函数部分,在IoU损失函数的基础上引入两层注意力... 针对海洋垃圾识别任务在实际应用中模型准确率不高的问题,提出一种基于优化YOLOv7的海洋垃圾识别算法。在图像增强部分,基于概率UIE的框架,通过添加eSE注意力减少特征信息的丢失。在损失函数部分,在IoU损失函数的基础上引入两层注意力机制的损失函数,将其与EIoU损失函数融合进一步提升模型的泛化能力。将该算法应用于海洋垃圾检测任务,并在基础数据集上对其进行评估。在YOLOTrashCan两个数据集上的平均精度均值指标分别达到69.5%、63.5%,相较于YOLOv7算法分别提升6%、1.6%。整体实验结果表明,所构建的算法能有效提升海洋垃圾检测的准确性。 展开更多
关键词 EUIE eSE注意力 海洋垃圾检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部