This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean f...This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean flow, and the k-ε equations for turbulence kinetic energy k and turbulence dissipation rate ε. To track a free surface, the volume of fluid (VOF) function, satisfying the advection equation was introduced. In the numerical treatment, third-order upwind difference scheme was applied to the convection terms of the RANS equations in order to reduce the effect of numerical viscosity. The shoaling and breaking processes of a periodic wave train on gently sloping beaches were modeled. The computed wave heights of a sloping beach and the distribution of breaking wave pressure on a vertical wall were compared with laboratory data.展开更多
Abstract A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton,...Abstract A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributionsto absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We estab- lish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the re- flection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.展开更多
Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are establishe...Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.展开更多
A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using h...A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25–26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of sus- pended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced.展开更多
A new modeling concept, referred to as Modeling Surgery, has been recently developed at University of Wisconsin-Madison. It is specifically designed to diagnose coupled feedbacks between different climate components a...A new modeling concept, referred to as Modeling Surgery, has been recently developed at University of Wisconsin-Madison. It is specifically designed to diagnose coupled feedbacks between different climate components as well as climatic teleconnections within a specific component through systematically modifying the coupling configurations and teleconnective pathways. It thus provides a powerful means for identifying the causes and mechanisms of low-frequency variability in the Earth's climate system. In this paper, we will give a short review of our recent progress in this new area.展开更多
The Regional Integrated Environmental Model System (RIEMS 2.0) coupled with a chemistry-aerosol model and the Princeton Ocean Model (POM) is employed to simulate regional oceanic impact on atmospheric circulation ...The Regional Integrated Environmental Model System (RIEMS 2.0) coupled with a chemistry-aerosol model and the Princeton Ocean Model (POM) is employed to simulate regional oceanic impact on atmospheric circulation and the direct radiative effect (DRE) of aerosol over East Asia. The aerosols considered in this study include both major anthropogenic aerosols (e.g., sulfate, black carbon, and organic carbon) and natural aerosols (e.g., soil dust and sea salt). The RIEMS 2.0 is driven by NCEP/NCAR reanalysis II, and the simulated period is from 1 January to 31 December 2006. The results show the following: (1) The simulated annual mean sea-level pressure by RIEMS 2.0 with POM is lower than without POM over the mainland and higher without POM over the ocean. (2) In summer, the subtropical high simulated by RIEMS 2.0 with POM is stronger and extends further westward, and the continental low is stronger than without POM in summer. (3) The aerosol optical depth (AOD) simulated by RIEMS 2.0 with POM is larger in the middle and lower reaches of the Yangtze River than without POM. (4) The direct radiative effect with POM is stronger than that without POM in the middle and lower reaches of the Yangtze River and parts of southern China. Therefore, the authors should take account of the impact of the regional ocean model on studying the direct climate effect &aerosols in long term simulation.展开更多
The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Variability (AMV) are the two dominant low-frequency modes in the climate system. This research focused on the response of these two modes under ...The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Variability (AMV) are the two dominant low-frequency modes in the climate system. This research focused on the response of these two modes under weak global warming. Observational data were derived from the Hadley Center Sea Ice and Sea Surface Temperature dataset (HadISST) and coupled model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Changes in PDO and AMV were examined using four models (bcc-csml-1, CCSM4, IPSL-CM5A-LR, and MPI- ESM-LR) with long weak global warming scenarios (RCP2.6). These models captured the two low-frequency modes in both pre-industrial run and RCP2.6 run. Under weak global warming, the time scales of PDO and AMV significantly decreased while the amplitude only slightly decreased. Interestingly, the standard deviation of the North Pacific sea surface temperature anomaly (SSTA) decreased only in decadal time scale, and that of the North Atlantic SSTA decreased both in interannual and decadal time scales. The coupled system consists of a slow ocean component, which has a decadal time scale, and a fast atmospheric component, which is calculated by subtracting the decadal from the total. Results suggest that under global warming, PDO change is dominated by ocean dynamics, and AMV change is dominated by ocean dynamics and stochastic atmosphere forcing.展开更多
To support navigational and environmental applications in coastal waters, marine opera- tional forecast models must be developed and implemented. A forecast model must guarantee that it is scientifically sound and pra...To support navigational and environmental applications in coastal waters, marine opera- tional forecast models must be developed and implemented. A forecast model must guarantee that it is scientifically sound and practically robust for performance and must meet or excel all target frequencies or durations before being released to the public. This paper discusses the standard policies and procedures for evaluation of operational marine forecast models. The primary variables to be evaluated are water lev- els, currents and water density (water temperature and salinity).展开更多
Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety iss...Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety issues. Degradation of both concrete and steel which is the main reason of reduction in the service life of RC structures strongly depends on the diffusion process of moisture and aggressive species. In this paper, the major and popular mathematical models of diffusion process in concrete are surveyed and investigated. Predominantly in these models, the coefficient of chloride diffusion into the concrete is assumed to be constant. Whereas, experimental records indicate that diffusion coefficient is a function of time. Subsequently, data analysis and comparisons between the existing analytical models for predicting the diffusion coefficient with the existing experimental database are carried out in this study. Clearly, these comparisons reveal that there are gaps between the existing mathematical models and previously recorded experimental results. Perhaps, these gaps may be interpreted as influence of the other affecting parameters on the diffusion coefficient such as temperature, aggregate size and relative humidity in addition to the water cement ratio. Accordingly, the existing mathematical models are not adequate enough to predict the diffusion coefficient precisely and further studies need to be performed.展开更多
Hydroelasticity has been introduced in ship seakeeping assessment for more than three decades, and it finally becomes an essential tool in marine industry for design of some types of ship. In the 35 years of evolution...Hydroelasticity has been introduced in ship seakeeping assessment for more than three decades, and it finally becomes an essential tool in marine industry for design of some types of ship. In the 35 years of evolution, hydroelasticity methods applied in industry of marine and offshore energy grown up from two dimensional to three dimensional and now has analysis models of linear model in frequency domain and nonlinear model in time domain. In this paper, we present the three dimensional hydroelasticity theory model in frequency domain and time domain, show the difference in the approach, and discuss their applications in wave-structure interaction.展开更多
Targeted observation is an observation strategy by which the concerned phenomenon is observed. In geoscienee, targeted ob- servation is mainly related to the forecasts of weather events or predictions of climate event...Targeted observation is an observation strategy by which the concerned phenomenon is observed. In geoscienee, targeted ob- servation is mainly related to the forecasts of weather events or predictions of climate events. This paper will first review the history of targeted observation, and then introduce the main methods used in targeted observation. The discussion on the theo- retical basis of targeted observation includes its advantages and limitations. After presenting the current situation of domestic and international targeted observations in atmospheric and oceanic sciences, the methods used for targeted observation, and their effect evaluation and testing are mainly discussed here. Finally, the author presents his suggestion about the prospect of further development in the field, and how to extend the method of targeted observation to deal with numerical model errors.展开更多
The rapid diversification of early animals during the Ediacaran(635–541 Ma) and early Cambrian(ca.541–509 Ma) has frequently been attributed to increasing oceanic oxygenation. However, the pattern of oceanic oxygena...The rapid diversification of early animals during the Ediacaran(635–541 Ma) and early Cambrian(ca.541–509 Ma) has frequently been attributed to increasing oceanic oxygenation. However, the pattern of oceanic oxygenation and its relationship to early animal evolution remain in debate. In this review,we examine the redox structure of Ediacaran and early Cambrian oceans and its controls, offering new insights into contemporaneous oceanic oxygenation patterns and their role in the coevolution of environments and early animals. We review the development of marine redox models which, in combination with independent distal deep-ocean redox proxies, supports a highly redox-stratified shelf and an anoxia-dominated deep ocean during the Ediacaran and early Cambrian. Geochemical and modeling evidence indicates that the marine redox structure was likely controlled by low atmospheric O2 levels and low seawater vertical mixing rates on shelves at that time. Furthermore, theoretical analysis and increasing geochemical evidence, particularly from South China, show that limited sulfate availability was a primary control on the attenuation of mid-depth euxinia offshore, in contrast to the existing paradigm invoking decreased organic carbon fluxes distally. In light of our review, we infer that if oceanic oxygenation indeed triggered the rise of early animals, it must have done so through a shelf oxygenation which was probably driven by elevated oxidant availability. Our review calls for further studies on EdiacaranCambrian marine redox structure and its controls, particularly from regions outside of South China, in order to better understand the coevolutionary relationship between oceanic redox and early animals.展开更多
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)the National Natural Science Foundation of China (No. 40476015).
文摘This paper introduces a numerical model for studying the evolution of a periodic wave train, shoaling, and breaking in surf zone. The model can solve the Reynolds averaged Navier-Stokes (RANS) equations for a mean flow, and the k-ε equations for turbulence kinetic energy k and turbulence dissipation rate ε. To track a free surface, the volume of fluid (VOF) function, satisfying the advection equation was introduced. In the numerical treatment, third-order upwind difference scheme was applied to the convection terms of the RANS equations in order to reduce the effect of numerical viscosity. The shoaling and breaking processes of a periodic wave train on gently sloping beaches were modeled. The computed wave heights of a sloping beach and the distribution of breaking wave pressure on a vertical wall were compared with laboratory data.
基金jointly supported by the International Cooperation and Exchange Projects of the National Natural Science Foundation of China (No.61361163001)the National Key Scientific Instrument and Equipment Development Projects of National Natural Science Foundation of China (No.41527901)the National High-Tech R&D Program (863 Program) (No.2013AA09A505)
文摘Abstract A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributionsto absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We estab- lish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the re- flection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2010CB428703)Oceanic Science Fund for Young Scholar of SOA (Nos. 2010225, 2010118)+1 种基金Public Science and Technology Research Funds Projects of Ocean of China (Nos. 201005008, 201005009)Open Fund of MOIDAT (No. 201011)
文摘Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.
基金This research was funded by The National Science Fund for Distin-guished Young Scholars (Estuarine and Coastal Studies 40225014) and The National Hi-Tech Research Fund (818-09-01-04).
文摘A three-dimensional transportation model for suspended solids (SS) in Zhujiang (Pearl) River estuary, South China, was developed by coupling with a three-dimensional hydrodynamic model. The model was validated using hourly measured data of sediment contents during 25–26, July 1999. The results showed that modeled contents matched well with measured ones and that the modeled top layer distribution agreed with the remotely sensed image of suspended solids in summer. The modeled results showed clearly the layers of sus- pended solids in depth, with larger sediment contents in lower layers though in the interface between salt water and freshwater the lowest contents appeared in middle layer. In overall, the suspended solids inflow from 8 rivers, transport southwestward, and carried by strong coastal flow in Zhujiang River estuary. Contours of sediment contents in the estuary spread further to the open sea during ebb tide rather than flood tide which reflects that the suspended solids in the estuary are land sourced.
文摘A new modeling concept, referred to as Modeling Surgery, has been recently developed at University of Wisconsin-Madison. It is specifically designed to diagnose coupled feedbacks between different climate components as well as climatic teleconnections within a specific component through systematically modifying the coupling configurations and teleconnective pathways. It thus provides a powerful means for identifying the causes and mechanisms of low-frequency variability in the Earth's climate system. In this paper, we will give a short review of our recent progress in this new area.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03)the National Basic Research Program of China(Grant Nos.2010CB950900 and 2009CB421100)+1 种基金the National Natural Science Foundation of China(Grant No. 91025003)the R&D Special Fund for Public Welfare Industry (Meteorology)(Grant No.GYHY200906020)
文摘The Regional Integrated Environmental Model System (RIEMS 2.0) coupled with a chemistry-aerosol model and the Princeton Ocean Model (POM) is employed to simulate regional oceanic impact on atmospheric circulation and the direct radiative effect (DRE) of aerosol over East Asia. The aerosols considered in this study include both major anthropogenic aerosols (e.g., sulfate, black carbon, and organic carbon) and natural aerosols (e.g., soil dust and sea salt). The RIEMS 2.0 is driven by NCEP/NCAR reanalysis II, and the simulated period is from 1 January to 31 December 2006. The results show the following: (1) The simulated annual mean sea-level pressure by RIEMS 2.0 with POM is lower than without POM over the mainland and higher without POM over the ocean. (2) In summer, the subtropical high simulated by RIEMS 2.0 with POM is stronger and extends further westward, and the continental low is stronger than without POM in summer. (3) The aerosol optical depth (AOD) simulated by RIEMS 2.0 with POM is larger in the middle and lower reaches of the Yangtze River than without POM. (4) The direct radiative effect with POM is stronger than that without POM in the middle and lower reaches of the Yangtze River and parts of southern China. Therefore, the authors should take account of the impact of the regional ocean model on studying the direct climate effect &aerosols in long term simulation.
文摘The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Variability (AMV) are the two dominant low-frequency modes in the climate system. This research focused on the response of these two modes under weak global warming. Observational data were derived from the Hadley Center Sea Ice and Sea Surface Temperature dataset (HadISST) and coupled model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Changes in PDO and AMV were examined using four models (bcc-csml-1, CCSM4, IPSL-CM5A-LR, and MPI- ESM-LR) with long weak global warming scenarios (RCP2.6). These models captured the two low-frequency modes in both pre-industrial run and RCP2.6 run. Under weak global warming, the time scales of PDO and AMV significantly decreased while the amplitude only slightly decreased. Interestingly, the standard deviation of the North Pacific sea surface temperature anomaly (SSTA) decreased only in decadal time scale, and that of the North Atlantic SSTA decreased both in interannual and decadal time scales. The coupled system consists of a slow ocean component, which has a decadal time scale, and a fast atmospheric component, which is calculated by subtracting the decadal from the total. Results suggest that under global warming, PDO change is dominated by ocean dynamics, and AMV change is dominated by ocean dynamics and stochastic atmosphere forcing.
基金Supported by the National Natural Science Foundation of China (No. 40376010).
文摘To support navigational and environmental applications in coastal waters, marine opera- tional forecast models must be developed and implemented. A forecast model must guarantee that it is scientifically sound and practically robust for performance and must meet or excel all target frequencies or durations before being released to the public. This paper discusses the standard policies and procedures for evaluation of operational marine forecast models. The primary variables to be evaluated are water lev- els, currents and water density (water temperature and salinity).
文摘Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety issues. Degradation of both concrete and steel which is the main reason of reduction in the service life of RC structures strongly depends on the diffusion process of moisture and aggressive species. In this paper, the major and popular mathematical models of diffusion process in concrete are surveyed and investigated. Predominantly in these models, the coefficient of chloride diffusion into the concrete is assumed to be constant. Whereas, experimental records indicate that diffusion coefficient is a function of time. Subsequently, data analysis and comparisons between the existing analytical models for predicting the diffusion coefficient with the existing experimental database are carried out in this study. Clearly, these comparisons reveal that there are gaps between the existing mathematical models and previously recorded experimental results. Perhaps, these gaps may be interpreted as influence of the other affecting parameters on the diffusion coefficient such as temperature, aggregate size and relative humidity in addition to the water cement ratio. Accordingly, the existing mathematical models are not adequate enough to predict the diffusion coefficient precisely and further studies need to be performed.
文摘Hydroelasticity has been introduced in ship seakeeping assessment for more than three decades, and it finally becomes an essential tool in marine industry for design of some types of ship. In the 35 years of evolution, hydroelasticity methods applied in industry of marine and offshore energy grown up from two dimensional to three dimensional and now has analysis models of linear model in frequency domain and nonlinear model in time domain. In this paper, we present the three dimensional hydroelasticity theory model in frequency domain and time domain, show the difference in the approach, and discuss their applications in wave-structure interaction.
基金sponsored by the National Natural Science Foundation of China(Grant No.41230420)the National Basic Research Program of China(Grant No.2012CB417404)
文摘Targeted observation is an observation strategy by which the concerned phenomenon is observed. In geoscienee, targeted ob- servation is mainly related to the forecasts of weather events or predictions of climate events. This paper will first review the history of targeted observation, and then introduce the main methods used in targeted observation. The discussion on the theo- retical basis of targeted observation includes its advantages and limitations. After presenting the current situation of domestic and international targeted observations in atmospheric and oceanic sciences, the methods used for targeted observation, and their effect evaluation and testing are mainly discussed here. Finally, the author presents his suggestion about the prospect of further development in the field, and how to extend the method of targeted observation to deal with numerical model errors.
基金supported by the National Natural Science Foundation of China-Research Councils United Kingdom_Natural Environment Research Council Program (41661134048)the National Natural Science Foundation of China (41825019, 41821001), the National Key Research & Development Program of China (2016YFA0601100)+1 种基金111 Project of China (BP0820004) to Chao Li. Meng Chengsupport from the National Natural Science Foundation of China (41703008, 41902027)。
文摘The rapid diversification of early animals during the Ediacaran(635–541 Ma) and early Cambrian(ca.541–509 Ma) has frequently been attributed to increasing oceanic oxygenation. However, the pattern of oceanic oxygenation and its relationship to early animal evolution remain in debate. In this review,we examine the redox structure of Ediacaran and early Cambrian oceans and its controls, offering new insights into contemporaneous oceanic oxygenation patterns and their role in the coevolution of environments and early animals. We review the development of marine redox models which, in combination with independent distal deep-ocean redox proxies, supports a highly redox-stratified shelf and an anoxia-dominated deep ocean during the Ediacaran and early Cambrian. Geochemical and modeling evidence indicates that the marine redox structure was likely controlled by low atmospheric O2 levels and low seawater vertical mixing rates on shelves at that time. Furthermore, theoretical analysis and increasing geochemical evidence, particularly from South China, show that limited sulfate availability was a primary control on the attenuation of mid-depth euxinia offshore, in contrast to the existing paradigm invoking decreased organic carbon fluxes distally. In light of our review, we infer that if oceanic oxygenation indeed triggered the rise of early animals, it must have done so through a shelf oxygenation which was probably driven by elevated oxidant availability. Our review calls for further studies on EdiacaranCambrian marine redox structure and its controls, particularly from regions outside of South China, in order to better understand the coevolutionary relationship between oceanic redox and early animals.