In recent years,red tides occurred frequently in coastal areas worldwide.Various methods based on the use of clay,copper sulfate,and bacteria have been successful in controlling red tides to some extent.As a new defen...In recent years,red tides occurred frequently in coastal areas worldwide.Various methods based on the use of clay,copper sulfate,and bacteria have been successful in controlling red tides to some extent.As a new defensive agent,marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae,such as Gymnodinium sp.(Pyrrophyta).In this study,we isolated a marine bacterium,HSB07,from seawater collected from Hongsha Bay,Sanya,South China Sea.Based on its 16S rRNA gene sequence and biochemical characteristics,the isolated strain HSB07 was identified as a member of the genus Halomonas.A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp.in a bioactive prescreening experiment.The extract was further separated into fractions A,B,and C by silica gel column chromatography.Fractions B and C showed strong inhibition activities against Gymnodinium.This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.展开更多
We extracted marine low-temperature lysozyme (MLTL),a novel lysozyme,from a marine microorganism through fermentation.Our previous study suggested that a low molecular weight (16 kDa) may exert anti-tumor activity thr...We extracted marine low-temperature lysozyme (MLTL),a novel lysozyme,from a marine microorganism through fermentation.Our previous study suggested that a low molecular weight (16 kDa) may exert anti-tumor activity through antiangiogenesis.In this study,we extracted a high weight (39 kDa) and investigated its antiangiogenic activity in vivo and in vitro.Using zebrafish embryos as an in vivo study model,we found that treatment with MLTL significantly inhibited the growth of subintestinal vessels (SIVs) in a dose-dependent manner and that 400 μg/ml MLTL was sufficient to block the growth of SIVs.An in vitro study conducted using human umbilical vein endothelial cells (HUVECs) revealed that MLTL suppressed the proliferation,migration and tube formation of HUVECs in a dose-dependent manner.Interestingly,assays by flow cytometry and DNA electrophoresis indicated that MLTL was able to induce apoptosis of HUVECs.Moreover,further study demonstrated that the disruption of intracellular Ca2+ homeostasis may play an important role in MLTL induced apoptosis of HUVECs.Taken together,the results of this study demonstrate for the first time that MLTL inhibits angiogenesis through its pleiotropic effects on vascular endothelial cells and induces apoptosis through regulation of cellular Ca2+ levels.The results of this study also revealed a possible mechanism underlying the antiangiogenic effect of MLTL and suggested that MLTL may be a promising new antiangiogenic agent for use in cancer therapy.展开更多
Bacteria of the genus Vibrio are ubiquitously distributed in the marine environment. Due to the rapid expansion of intensive mariculture and the consequent deterioration of culture conditions, more and more Vibrio spp...Bacteria of the genus Vibrio are ubiquitously distributed in the marine environment. Due to the rapid expansion of intensive mariculture and the consequent deterioration of culture conditions, more and more Vibrio spp. have been recognized as pathogenic agents in outbreaks of vibriosis, a serious epizootic disease affecting most wild and farmed fish species worldwide, which has become the most important limiting factor for the development of intensive mariculture industry. Attempts have been made to understand the pathogenicity of vibrios in host fish with the ultimate aim of elucidating the best means for disease control. After an extensive literature survey of the recent advances in the field of fish vibriosis, the pathological changes, virulence factors and associated potential pathogenic mechanisms, transmission routes and related environmental factors involved in outbreak of vibriosis, as well as the controlling strategies are reviewed in the present paper.展开更多
Magnetotactic bacteria have become a hot spot of research in microbiology attracting inten-sive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fas-tidious bacteria. T...Magnetotactic bacteria have become a hot spot of research in microbiology attracting inten-sive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fas-tidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dis-persive X-ray spectrum. The biological and physiological characteristics of this bacterium were also de-scribed. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.展开更多
Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry. Although biogeochemical redox stratification has been well documented in marine s...Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry. Although biogeochemical redox stratification has been well documented in marine sediments, its impact on microbial communities remains largely unknown. In this study, we applied denaturing gradient gel electrophoresis (DGGE) and clone library construction to investigate the diversity and stratification of bacterial communities in redox-stratified sandy reef sediments in a microcosm. A total of 88 Operational Taxonomic Units (OTU) were identified from 16S rRNA clone libraries constructed from sandy reef sediments in a laboratory microcosm. They were members of nine phyla and three candidate divisions, including Proteobacteria (Alphas, Beta-, Gamma-, Delta-, and Epsilonproteobacteria), Aetinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Verrucomicrobia, Spirochaetes, and the candidate divisions WS3, SO31 and AO19. The vast majority of these phylotypes are related to clone sequences from other marine sediments, but OTUs of Epsilonproteobacteria and WS3 are reported for the first time from permeable marine sediments. Several other OTUs are potential new bacterial phylotypes because of their low similarity with reference sequences. Results from the 16S rRNA, gene clone sequence analyses suggested that bacterial communities exhibit clear stratification across large redox gradients in these sediments, with the highest diversity found in the anoxic layer (15-25 mm) and the least diversity in the suboxic layer (3-5 mm). Analysis of the nosZ, and amoA gene libraries also indicated the stratification of denitrifiers and nitrifiers, with their highest diversity being in the anoxic and oxic sediment layers, respectively. These results indicated that redox-stratification can affect the distribution of bacterial communities in sandy reef sediments.展开更多
基金Supported by the Science & Technology Project of Nantong(No.AS2011012)the National Key Technology Research and Development Program(No.2011BAE06B04-05)the Open Project Program of the Key Laboratory of Marine Bio-resources Sustainable Utilization,SCSIO,CAS(No.LMB121006)
文摘In recent years,red tides occurred frequently in coastal areas worldwide.Various methods based on the use of clay,copper sulfate,and bacteria have been successful in controlling red tides to some extent.As a new defensive agent,marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae,such as Gymnodinium sp.(Pyrrophyta).In this study,we isolated a marine bacterium,HSB07,from seawater collected from Hongsha Bay,Sanya,South China Sea.Based on its 16S rRNA gene sequence and biochemical characteristics,the isolated strain HSB07 was identified as a member of the genus Halomonas.A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp.in a bioactive prescreening experiment.The extract was further separated into fractions A,B,and C by silica gel column chromatography.Fractions B and C showed strong inhibition activities against Gymnodinium.This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.
基金Supported by the National High Technology Research and Development Program (863 Program) (No.2003AA625070)the Research Fund Program of Qingdao University (No.20051102)
文摘We extracted marine low-temperature lysozyme (MLTL),a novel lysozyme,from a marine microorganism through fermentation.Our previous study suggested that a low molecular weight (16 kDa) may exert anti-tumor activity through antiangiogenesis.In this study,we extracted a high weight (39 kDa) and investigated its antiangiogenic activity in vivo and in vitro.Using zebrafish embryos as an in vivo study model,we found that treatment with MLTL significantly inhibited the growth of subintestinal vessels (SIVs) in a dose-dependent manner and that 400 μg/ml MLTL was sufficient to block the growth of SIVs.An in vitro study conducted using human umbilical vein endothelial cells (HUVECs) revealed that MLTL suppressed the proliferation,migration and tube formation of HUVECs in a dose-dependent manner.Interestingly,assays by flow cytometry and DNA electrophoresis indicated that MLTL was able to induce apoptosis of HUVECs.Moreover,further study demonstrated that the disruption of intracellular Ca2+ homeostasis may play an important role in MLTL induced apoptosis of HUVECs.Taken together,the results of this study demonstrate for the first time that MLTL inhibits angiogenesis through its pleiotropic effects on vascular endothelial cells and induces apoptosis through regulation of cellular Ca2+ levels.The results of this study also revealed a possible mechanism underlying the antiangiogenic effect of MLTL and suggested that MLTL may be a promising new antiangiogenic agent for use in cancer therapy.
文摘Bacteria of the genus Vibrio are ubiquitously distributed in the marine environment. Due to the rapid expansion of intensive mariculture and the consequent deterioration of culture conditions, more and more Vibrio spp. have been recognized as pathogenic agents in outbreaks of vibriosis, a serious epizootic disease affecting most wild and farmed fish species worldwide, which has become the most important limiting factor for the development of intensive mariculture industry. Attempts have been made to understand the pathogenicity of vibrios in host fish with the ultimate aim of elucidating the best means for disease control. After an extensive literature survey of the recent advances in the field of fish vibriosis, the pathological changes, virulence factors and associated potential pathogenic mechanisms, transmission routes and related environmental factors involved in outbreak of vibriosis, as well as the controlling strategies are reviewed in the present paper.
基金Supported by The Outstanding Overseas Chinese Scholars Fund of Chinese Academy of Sciences (2003-1-5). Innovation Program of IOCAS (L54022804), Program for Science and Technology Development of Shandong Province (031070117), and Program for Science and Technol-ogy Development of Qingdao (02-2-kj-hh-55).
文摘Magnetotactic bacteria have become a hot spot of research in microbiology attracting inten-sive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fas-tidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dis-persive X-ray spectrum. The biological and physiological characteristics of this bacterium were also de-scribed. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.
基金Supported by a NOAA Grant(No.NA04OAR4600196(GW))the microcosm development and operation was supported by the U.S.National Science Foundation(Nos.OCE03-27332 and OCE05-36616(FJS))a project of Shandong Province Higher Education Science and Technology Program(No.J10LC09)
文摘Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry. Although biogeochemical redox stratification has been well documented in marine sediments, its impact on microbial communities remains largely unknown. In this study, we applied denaturing gradient gel electrophoresis (DGGE) and clone library construction to investigate the diversity and stratification of bacterial communities in redox-stratified sandy reef sediments in a microcosm. A total of 88 Operational Taxonomic Units (OTU) were identified from 16S rRNA clone libraries constructed from sandy reef sediments in a laboratory microcosm. They were members of nine phyla and three candidate divisions, including Proteobacteria (Alphas, Beta-, Gamma-, Delta-, and Epsilonproteobacteria), Aetinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Verrucomicrobia, Spirochaetes, and the candidate divisions WS3, SO31 and AO19. The vast majority of these phylotypes are related to clone sequences from other marine sediments, but OTUs of Epsilonproteobacteria and WS3 are reported for the first time from permeable marine sediments. Several other OTUs are potential new bacterial phylotypes because of their low similarity with reference sequences. Results from the 16S rRNA, gene clone sequence analyses suggested that bacterial communities exhibit clear stratification across large redox gradients in these sediments, with the highest diversity found in the anoxic layer (15-25 mm) and the least diversity in the suboxic layer (3-5 mm). Analysis of the nosZ, and amoA gene libraries also indicated the stratification of denitrifiers and nitrifiers, with their highest diversity being in the anoxic and oxic sediment layers, respectively. These results indicated that redox-stratification can affect the distribution of bacterial communities in sandy reef sediments.