Geological research on the Mediterranean region is presently characterized by the transition from disciplinary to multidisciplinary research, as well as from national to international investigations. In order to synth...Geological research on the Mediterranean region is presently characterized by the transition from disciplinary to multidisciplinary research, as well as from national to international investigations. In order to synthesize and integrate the vast disciplinary and national datasets which are available, it is necessary to implement maximum interaction among geoscientists of different backgrounds. The creation of project-oriented task forces in universities and other research institutions, as well as the development of large international cooperation programs, is instrumental in pursuing such a multidisciplinary and supranational approach. The TRANSMED Atlas, an official publication of the 32nd International Geological Congress (Florence 2004), is the result of an international scientific cooperation program which brought together for over two years sixtythree structural geologists, geophysicists, marine geologists, petrologists, sedimentologists, stratigraphers, paleogeographers, and petroleum geologists coming from eighteen countries, and working for the petroleum industry, academia, and other institutions, both public and private. The TRANSMED Atlas provides an updated, synthetic, and coherent portrayal of the overall geological-geophysical structure of the Mediterranean domain and the surrounding areas. The initial stimulus for the Atlas came from the realization of the extremely heterogeneous nature of the existing geological-geophysical data about such domain. These data have been gathered by universities, oil companies, geological surveys and other institutions in several countries, often using different procedures and standards. In addition, much of these data are written in languages and published in outlets that are not readily accessible to the general international reader. By synthesizing and integrating a wealth of preexisting and new data derived from surficial geology, seismic sections at various scales, and mantle tomographies, the TRANSMED Atlas provides for the first time a coherent geological overview of the Mediterranean region and represents an ideal springboard for future studies.展开更多
A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model, with a focus on the effects of background circulation and Sea Surface ...A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model, with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog. Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea, creating conditions favorable for sea fog/stratus formation. The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus. The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer), the sinking branch of which on the cold flank of SSTF helps lower the stratus layer fiLrther to reach the sea surface. The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence. The secondary circulation becomes weak and the fog patches are shrtmk heavily with the smoothed SSTE A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas. Finally, the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global wanning.展开更多
The dynamic microcosms were used to evaluate the effect of oil spills on microbial ecological system in marine sediment and the enhancement of nutrient on the oil removal. The function and structure of microbial commu...The dynamic microcosms were used to evaluate the effect of oil spills on microbial ecological system in marine sediment and the enhancement of nutrient on the oil removal. The function and structure of microbial community caused by the oil pollution and phosphate dosage were simultaneously monitored by dehydrogenase activity assay and PCR-denaturing gradient gel electrophoresis(DGGE) techniques. The results indicated that the amount of total bacteria in all dynamic microcosms declined rapidly with incubation time. The number of petroleum-degrading bacteria and the activity of sediment dehydrogenase were gradually enhanced by petroleum in the oil-treated microcosms, while they both showed no obvious response to phosphate dosage. In comparison, phosphate spiked heterotrophic bacteria and they showed a significant increase in amount. DGGE profiles indicated that petroleum dosage greatly changed community structure, and the bacteria belonged to class Deltaproteobacteria, and phyla Bacteroidetes and Chlorobi were enriched. This study demonstrated that petroleum input greatly impacted the microbial community structure and consequently the marine sediment petroleum-degrading activity was enhanced. Phosphate dosage would multiply heterotrophic bacteria but not significantly enhance the petroleum degradation.展开更多
The aim of this study is to elaborate a possible missing source of high-throughput organic nitrogen in rainfall.The authors classified the observed flux data of dissolved organic nitrogen in terms of the attributes of...The aim of this study is to elaborate a possible missing source of high-throughput organic nitrogen in rainfall.The authors classified the observed flux data of dissolved organic nitrogen in terms of the attributes of the wet deposition event itself,such as the season,precipitation,air mass backward trajectory,and effect of typhoons.The monitoring results of the ocean eutrophication and the chlorophyll-a map of the surface water were compared with the trajectory of the high-flux deposition events.The results show that approximately one third of the total wet deposition organic nitrogen derived from a confluence of three factors:rain in the wet season,air masses from the ocean,and rainfall over 50 mm.It could be seen that the co-occurrence of intense events such as a typhoon and eutrophic surface sea waters might be an important source of dissolved organic nitrogen in wet deposition.展开更多
文摘Geological research on the Mediterranean region is presently characterized by the transition from disciplinary to multidisciplinary research, as well as from national to international investigations. In order to synthesize and integrate the vast disciplinary and national datasets which are available, it is necessary to implement maximum interaction among geoscientists of different backgrounds. The creation of project-oriented task forces in universities and other research institutions, as well as the development of large international cooperation programs, is instrumental in pursuing such a multidisciplinary and supranational approach. The TRANSMED Atlas, an official publication of the 32nd International Geological Congress (Florence 2004), is the result of an international scientific cooperation program which brought together for over two years sixtythree structural geologists, geophysicists, marine geologists, petrologists, sedimentologists, stratigraphers, paleogeographers, and petroleum geologists coming from eighteen countries, and working for the petroleum industry, academia, and other institutions, both public and private. The TRANSMED Atlas provides an updated, synthetic, and coherent portrayal of the overall geological-geophysical structure of the Mediterranean domain and the surrounding areas. The initial stimulus for the Atlas came from the realization of the extremely heterogeneous nature of the existing geological-geophysical data about such domain. These data have been gathered by universities, oil companies, geological surveys and other institutions in several countries, often using different procedures and standards. In addition, much of these data are written in languages and published in outlets that are not readily accessible to the general international reader. By synthesizing and integrating a wealth of preexisting and new data derived from surficial geology, seismic sections at various scales, and mantle tomographies, the TRANSMED Atlas provides for the first time a coherent geological overview of the Mediterranean region and represents an ideal springboard for future studies.
文摘A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model, with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog. Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea, creating conditions favorable for sea fog/stratus formation. The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus. The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer), the sinking branch of which on the cold flank of SSTF helps lower the stratus layer fiLrther to reach the sea surface. The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence. The secondary circulation becomes weak and the fog patches are shrtmk heavily with the smoothed SSTE A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas. Finally, the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global wanning.
基金supported by the National Natural Science Foundation of China (Grant No.40801193)the Basic Research Projects of Qingdao Science and Technology Program (12-1-4-1-(12)-jch)the Scientific Research Foundation for the Excellent Middle-Aged and Youth Scientists of Shandong Province of China (BS2011NJ018)
文摘The dynamic microcosms were used to evaluate the effect of oil spills on microbial ecological system in marine sediment and the enhancement of nutrient on the oil removal. The function and structure of microbial community caused by the oil pollution and phosphate dosage were simultaneously monitored by dehydrogenase activity assay and PCR-denaturing gradient gel electrophoresis(DGGE) techniques. The results indicated that the amount of total bacteria in all dynamic microcosms declined rapidly with incubation time. The number of petroleum-degrading bacteria and the activity of sediment dehydrogenase were gradually enhanced by petroleum in the oil-treated microcosms, while they both showed no obvious response to phosphate dosage. In comparison, phosphate spiked heterotrophic bacteria and they showed a significant increase in amount. DGGE profiles indicated that petroleum dosage greatly changed community structure, and the bacteria belonged to class Deltaproteobacteria, and phyla Bacteroidetes and Chlorobi were enriched. This study demonstrated that petroleum input greatly impacted the microbial community structure and consequently the marine sediment petroleum-degrading activity was enhanced. Phosphate dosage would multiply heterotrophic bacteria but not significantly enhance the petroleum degradation.
基金This research was supported by the National Key R&D Program of China[grant number 2017YFC0210100]the National Natural Science Funds for Distinguished Young Scholars[grant number 41425020]the National Natural Science Foundation[grant numbers 41705123 and 41530641].This work was also supported by the Dinghushan Forest Ecosystem Research Station.
文摘The aim of this study is to elaborate a possible missing source of high-throughput organic nitrogen in rainfall.The authors classified the observed flux data of dissolved organic nitrogen in terms of the attributes of the wet deposition event itself,such as the season,precipitation,air mass backward trajectory,and effect of typhoons.The monitoring results of the ocean eutrophication and the chlorophyll-a map of the surface water were compared with the trajectory of the high-flux deposition events.The results show that approximately one third of the total wet deposition organic nitrogen derived from a confluence of three factors:rain in the wet season,air masses from the ocean,and rainfall over 50 mm.It could be seen that the co-occurrence of intense events such as a typhoon and eutrophic surface sea waters might be an important source of dissolved organic nitrogen in wet deposition.