碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)作为应对全球气候变化的关键技术,是实现“双碳”目标之利器,受到全球的广泛关注。本文对CCUS全流程及其技术进行总结,重点介绍了燃烧前捕集、富氧燃烧捕集和燃烧后捕...碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)作为应对全球气候变化的关键技术,是实现“双碳”目标之利器,受到全球的广泛关注。本文对CCUS全流程及其技术进行总结,重点介绍了燃烧前捕集、富氧燃烧捕集和燃烧后捕集3种类型,其中燃烧后捕集在技术上最为成熟;CO_(2)运输方式主要有管道运输、罐车运输以及船舶运输,其中管道运输是未来发展的重点。阐述了国内外现阶段CCUS示范项目发展现状,同时总结了制约目前CCUS发展的经济、技术及政策等因素。未来应重点突破的技术壁垒,研发新型高效、低耗碳捕集技术,加快发展多能互补耦合利用模式,以促进CCUS项目落地发展,保障我国碳排放战略的实施和实现。展开更多
生物质能-碳捕集与封存(Bioenergy with Carbon Capture and Storage,BECCS)是一种应对气候变化的重要负排放技术。然而,目前学者对于该技术的可持续性应用仍存在争议。能值分析是一种能有效评估系统可持续性的量化方法,能够对系统的资...生物质能-碳捕集与封存(Bioenergy with Carbon Capture and Storage,BECCS)是一种应对气候变化的重要负排放技术。然而,目前学者对于该技术的可持续性应用仍存在争议。能值分析是一种能有效评估系统可持续性的量化方法,能够对系统的资源效率、环境影响和经济效益进行综合考量,进而全面反映系统的可持续发展水平。对8种典型的生物质发电系统,即有/无碳捕集与封存(Carbon Capture and Storage,CCS)的生物质直燃发电、生物质掺烧发电、生物质整体气化循环发电以及2种新型BECCS展开能值分析,选取能值产出率、环境负载率、可持续性指数等典型能值指标和碳排放指标对系统展开对比评价。结果显示,生物质发电系统的CO_(2)净排放量远低于煤基发电系统,耦合CCS后可实现负排放效益;生物质发电系统具有较低的环境负载率(ELR<2)和较高的可持续性指数(ESI<5.5),综合效益表现较优,长期可持续。此外,系统可持续性还与国家政策和生物质供应有关。敏感性分析表明,制定合适的激励政策,合理规划电厂选址以确保稳定充足的生物质供给,是提高系统可持续性的重要途径。展开更多
文摘碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)作为应对全球气候变化的关键技术,是实现“双碳”目标之利器,受到全球的广泛关注。本文对CCUS全流程及其技术进行总结,重点介绍了燃烧前捕集、富氧燃烧捕集和燃烧后捕集3种类型,其中燃烧后捕集在技术上最为成熟;CO_(2)运输方式主要有管道运输、罐车运输以及船舶运输,其中管道运输是未来发展的重点。阐述了国内外现阶段CCUS示范项目发展现状,同时总结了制约目前CCUS发展的经济、技术及政策等因素。未来应重点突破的技术壁垒,研发新型高效、低耗碳捕集技术,加快发展多能互补耦合利用模式,以促进CCUS项目落地发展,保障我国碳排放战略的实施和实现。
文摘生物质能-碳捕集与封存(Bioenergy with Carbon Capture and Storage,BECCS)是一种应对气候变化的重要负排放技术。然而,目前学者对于该技术的可持续性应用仍存在争议。能值分析是一种能有效评估系统可持续性的量化方法,能够对系统的资源效率、环境影响和经济效益进行综合考量,进而全面反映系统的可持续发展水平。对8种典型的生物质发电系统,即有/无碳捕集与封存(Carbon Capture and Storage,CCS)的生物质直燃发电、生物质掺烧发电、生物质整体气化循环发电以及2种新型BECCS展开能值分析,选取能值产出率、环境负载率、可持续性指数等典型能值指标和碳排放指标对系统展开对比评价。结果显示,生物质发电系统的CO_(2)净排放量远低于煤基发电系统,耦合CCS后可实现负排放效益;生物质发电系统具有较低的环境负载率(ELR<2)和较高的可持续性指数(ESI<5.5),综合效益表现较优,长期可持续。此外,系统可持续性还与国家政策和生物质供应有关。敏感性分析表明,制定合适的激励政策,合理规划电厂选址以确保稳定充足的生物质供给,是提高系统可持续性的重要途径。