An effort was made to couple FVCOM (a three-dimensional (3D),unstructured grid,Finite Volume Coastal Ocean Model) and FVCOM-SWAVE (an unstructured grid,finite-volume surface wave model) for the study of nearshore ocea...An effort was made to couple FVCOM (a three-dimensional (3D),unstructured grid,Finite Volume Coastal Ocean Model) and FVCOM-SWAVE (an unstructured grid,finite-volume surface wave model) for the study of nearshore ocean processes such as tides,circulation,storm surge,waves,sediment transport,and morphological evolution.The coupling between FVCOM and FVCOM-SWAVE was achieved through incorporating 3D radiation stress,wave-current-sediment-related bottom boundary layer,sea surface stress parameterizations,and morphology process.FVCOM also includes a 3D sediment transport module.With accurate fitting of irregular coastlines,the model provides a unique tool to study sediment dynamics in coastal ocean,estuaries,and wetlands where local geometries are characterized by inlets,islands,and intertidal marsh zones.The model was validated by two standard benchmark tests: 1) spectral waves approaching a mild sloping beach and 2) morphological changes of seabed in an idealized tidal inlet.In Test 1,model results were compared with both analytical solutions and laboratory experiments.A further comparison was also made with the structured grid Regional Ocean Model System (ROMS),which provides an insight into the performance of the two models with the same open boundary forcing.展开更多
China Ocean ReAnalysis(CORA) version 1.0 products for the period 2009-18 have been developed and validated.The model configuration and assimilation algorithm have both been updated compared to those of the 51-year(195...China Ocean ReAnalysis(CORA) version 1.0 products for the period 2009-18 have been developed and validated.The model configuration and assimilation algorithm have both been updated compared to those of the 51-year(1958-2008) products.The assimilated observations include temperature and salinity field data,satellite remote sensing sea surface temperature,and merged sea surface height(SSH) anomaly data.The validation includes the following three aspects:(1) Temperature,salinity,and SSH anomaly root-mean-square errors(RMSEs) are computed as a primary evaluation of the reanalysis quality.The 0-2000 m domain-averaged RMSEs of temperature and salinity are 0.61℃ and 0.08 psu,respectively.The SSH anomaly RMSE is less than 0.2 m in most regions.(2) The 35°N temperature section is used to evaluate the ability to reproduce the thermocline,mixing layer,and Yellow Sea cold water mass.In summer,the thermocline is reinforced,with the gradient changing from 3℃ in May to 10℃ in August.The mixing-layer depth reproduced by CORA is consistent with that computed from the observed climatology.The Yellow Sea cold water mass forms at a depth of 50 m.(3) The reanalysis current is examined against the tracks of some drifting buoys.The results show that the reanalysis current can capture the mesoscale eddies near the Kuroshio,which are similar to those described by the drifting buoys.Overall,the 2009-18 CORA reanalysis products are capable of reproducing major oceanic phenomena and processes in the coastal waters of China and adjacent seas.展开更多
A neutral density surface is a logical study frame for water-mass mixing since water parcels spread along such a surface without doing work against buoyancy restoring force. Mesoscale eddies are believed to stir and s...A neutral density surface is a logical study frame for water-mass mixing since water parcels spread along such a surface without doing work against buoyancy restoring force. Mesoscale eddies are believed to stir and subsequently mix predominantly along such surfaces. Because of the nonlinear nature of the equation of state of seawater, the process of accurately mapping a neutral density surface necessarily involves lateral computation from one conductivity, temperature and depth (CTD) cast to the next in a logical sequence. By contrast, the depth of a potential density surface on any CTD cast is found solely from the data on this cast. The lateral calculation procedure causes a significant inconvenience. In a previous paper by present author published in this journal (You, 2006), the mapping of neutral density surfaces with regularly gridded data such as Levitus data has been introduced. In this note, I present a new method to find the depth of a neutral density surface from a cast without having to specify an integration path in space. An appropriate reference point is required that is on the neutral density surface and thereafter the neutral density surface can be de- termined by using the CTD casts in any order. This method is only approximate and the likely errors can be estimated by plotting a scatter diagram of all the pressures and potential temperatures on the neutral density surfaces. The method assumes that the variations of potential temperature and pressure (with respect to the values at the reference point) on the neutral density surface are proportional. It is important to select the most appropriate reference point in order to approximately satisfy this assumption, and in practice this is found by inspecting the θ-p plot of data on the surface. This may require that the algorithm be used twice. When the straight lines on the θ-p plot, drawn from the reference point to other points on the neutral density surface, enclose an area that is external to the clus- ter of θ-p points of the neutral density surface, errors will occur, and these errors can be quantified from this diagram. Examples showing the use of the method are presented for each of the world’s main oceans.展开更多
Based on the advantages of the openness,flexibility,high-efficiency,intelligence,and safety of grid,this paper focuses on the methods of marine environmental information sharing and integration in grid environment.Acc...Based on the advantages of the openness,flexibility,high-efficiency,intelligence,and safety of grid,this paper focuses on the methods of marine environmental information sharing and integration in grid environment.According to the characteristics of marine information,which includes multisource,dynamic,and high-dimensional,this paper provides a framework and the technical solution for a multisource marine environmental information grid platform.As an experiment,the prototype takes the region of South China Sea as its study area and chooses three kinds of marine environmental information as the representative types for the marine information.The realization of the prototype of multisource marine environmental information grid platform shows the feasibility and practicality of the framework and the technical solution.展开更多
基金supported by the State Scholarship Fund for his PhD degree during a two-year (2007-2009) study at University of Massachusetts-Dartmouth in US
文摘An effort was made to couple FVCOM (a three-dimensional (3D),unstructured grid,Finite Volume Coastal Ocean Model) and FVCOM-SWAVE (an unstructured grid,finite-volume surface wave model) for the study of nearshore ocean processes such as tides,circulation,storm surge,waves,sediment transport,and morphological evolution.The coupling between FVCOM and FVCOM-SWAVE was achieved through incorporating 3D radiation stress,wave-current-sediment-related bottom boundary layer,sea surface stress parameterizations,and morphology process.FVCOM also includes a 3D sediment transport module.With accurate fitting of irregular coastlines,the model provides a unique tool to study sediment dynamics in coastal ocean,estuaries,and wetlands where local geometries are characterized by inlets,islands,and intertidal marsh zones.The model was validated by two standard benchmark tests: 1) spectral waves approaching a mild sloping beach and 2) morphological changes of seabed in an idealized tidal inlet.In Test 1,model results were compared with both analytical solutions and laboratory experiments.A further comparison was also made with the structured grid Regional Ocean Model System (ROMS),which provides an insight into the performance of the two models with the same open boundary forcing.
基金supported by grants from the National Key Research and Development Program of China [grant numbers 2016YFC1401800,2017YFC1404103,2016YFC1401701,and 2019YFC1510000]the National Natural Science Foundation of China [grant number 41976019]the Tianjin Natural Science Foundation [grant number 18JCQNJC01200]。
文摘China Ocean ReAnalysis(CORA) version 1.0 products for the period 2009-18 have been developed and validated.The model configuration and assimilation algorithm have both been updated compared to those of the 51-year(1958-2008) products.The assimilated observations include temperature and salinity field data,satellite remote sensing sea surface temperature,and merged sea surface height(SSH) anomaly data.The validation includes the following three aspects:(1) Temperature,salinity,and SSH anomaly root-mean-square errors(RMSEs) are computed as a primary evaluation of the reanalysis quality.The 0-2000 m domain-averaged RMSEs of temperature and salinity are 0.61℃ and 0.08 psu,respectively.The SSH anomaly RMSE is less than 0.2 m in most regions.(2) The 35°N temperature section is used to evaluate the ability to reproduce the thermocline,mixing layer,and Yellow Sea cold water mass.In summer,the thermocline is reinforced,with the gradient changing from 3℃ in May to 10℃ in August.The mixing-layer depth reproduced by CORA is consistent with that computed from the observed climatology.The Yellow Sea cold water mass forms at a depth of 50 m.(3) The reanalysis current is examined against the tracks of some drifting buoys.The results show that the reanalysis current can capture the mesoscale eddies near the Kuroshio,which are similar to those described by the drifting buoys.Overall,the 2009-18 CORA reanalysis products are capable of reproducing major oceanic phenomena and processes in the coastal waters of China and adjacent seas.
文摘A neutral density surface is a logical study frame for water-mass mixing since water parcels spread along such a surface without doing work against buoyancy restoring force. Mesoscale eddies are believed to stir and subsequently mix predominantly along such surfaces. Because of the nonlinear nature of the equation of state of seawater, the process of accurately mapping a neutral density surface necessarily involves lateral computation from one conductivity, temperature and depth (CTD) cast to the next in a logical sequence. By contrast, the depth of a potential density surface on any CTD cast is found solely from the data on this cast. The lateral calculation procedure causes a significant inconvenience. In a previous paper by present author published in this journal (You, 2006), the mapping of neutral density surfaces with regularly gridded data such as Levitus data has been introduced. In this note, I present a new method to find the depth of a neutral density surface from a cast without having to specify an integration path in space. An appropriate reference point is required that is on the neutral density surface and thereafter the neutral density surface can be de- termined by using the CTD casts in any order. This method is only approximate and the likely errors can be estimated by plotting a scatter diagram of all the pressures and potential temperatures on the neutral density surfaces. The method assumes that the variations of potential temperature and pressure (with respect to the values at the reference point) on the neutral density surface are proportional. It is important to select the most appropriate reference point in order to approximately satisfy this assumption, and in practice this is found by inspecting the θ-p plot of data on the surface. This may require that the algorithm be used twice. When the straight lines on the θ-p plot, drawn from the reference point to other points on the neutral density surface, enclose an area that is external to the clus- ter of θ-p points of the neutral density surface, errors will occur, and these errors can be quantified from this diagram. Examples showing the use of the method are presented for each of the world’s main oceans.
基金Supported by the National 863 Program of China (No.2009AA12Z148,No.2007AA092202)the Knowledge Innovation Project of Chinese Academy of Sciences (No.KZCX1-YW-12-04)
文摘Based on the advantages of the openness,flexibility,high-efficiency,intelligence,and safety of grid,this paper focuses on the methods of marine environmental information sharing and integration in grid environment.According to the characteristics of marine information,which includes multisource,dynamic,and high-dimensional,this paper provides a framework and the technical solution for a multisource marine environmental information grid platform.As an experiment,the prototype takes the region of South China Sea as its study area and chooses three kinds of marine environmental information as the representative types for the marine information.The realization of the prototype of multisource marine environmental information grid platform shows the feasibility and practicality of the framework and the technical solution.