In the spring of 1999 the Ocean Drilling Pro-gram (ODP) Leg 184 Shipboard Party cored 17 holes at 6 deep water sites in the northern and southern parts of the South China Sea (SCS). Chinese scientists actively partici...In the spring of 1999 the Ocean Drilling Pro-gram (ODP) Leg 184 Shipboard Party cored 17 holes at 6 deep water sites in the northern and southern parts of the South China Sea (SCS). Chinese scientists actively partici-pated in the entire process of this first deep-sea drilling leg off China, from proposal to post-cruise studies. More than 30 categories of analyses have been conducted post-cruise in various Chinese laboratories on a large number of core sam-ples, and the total number of analyses exceeded 60 thousand. The major scientific achievements of the Leg 184 studies are briefly reported in three successive papers, with the first one presented here dealing with deep-sea stratigraphy and evolu-tion of climate cycles. This ODP leg has established the best deep-sea stratigraphic sequences in the Western Pacific: the 23-Ma isotope sequence from the Dong-Sha area is unique worldwide because of its continuity; the last 5-Ma sequence from the Nansha area represents one of the best 4 ODP sites worldwide with the highest time-resolution for that time in-terval, and the sequences of physical properties enable a de-cadal-scale time resolution. All these together have provided for the first time high-quality marine records for paleoenvi-ronmental studies in the Asian-Pacific region. This new set of stratigraphic records has revealed changes in climate cyclic-ity over the last 20 Ma with the fluctuating power of the 100 ka, 400 ka, 2000 ka eccentricity cycles, indicating the evolv-ing response of the climate system to orbital forcing along with the growth of the Antarctic and Northern Hemisphere ice sheets.展开更多
As the third summary report of ODP Leg 184 to the South China Sea (SCS), this paper discusses the evolution of the East Asian monsoon and the SCS basin. A multi-proxy approach, involving geochemistry, micropaleontolog...As the third summary report of ODP Leg 184 to the South China Sea (SCS), this paper discusses the evolution of the East Asian monsoon and the SCS basin. A multi-proxy approach, involving geochemistry, micropaleontology, pollen and other analyses, was adopted for reconstructing the evolutionary history of the East Asian monsoon, which was characterized by a series of paleo-climate events especially at 8, 3.2, 2.2 and 0.4 Ma. The new record indicates similar stages in the development of the East and South Asian monsoons, with an enhanced winter monsoon over East Asia being the major difference. The rich spectrums of monsoon variability from the southern SCS also reveal other characteristic features of the low latitude ocean. Evidence for the evolution of the SCS includes the hemipelagic Oligocene sediments, implying the existence of deep water environments during the early seafloor spreading stage of the SCS basin. The four major unconformities and some remarkable diagenetic features in upper Oligocene deposits indicate the strongest tectonic events in the region. From a careful comparison of lithologies and sedimentation rates, we conclude that the prominent differences in sedimentary environments between the southern and northern SCS were established only by ~3 Ma.展开更多
A 5-Ma record from ODP Site 1143 has re-vealed the long-term cycles of 400—500 ka in the carbon isotope variations. The periodicity is correlatable all over the global ocean and hence indicative of low-frequency chan...A 5-Ma record from ODP Site 1143 has re-vealed the long-term cycles of 400—500 ka in the carbon isotope variations. The periodicity is correlatable all over the global ocean and hence indicative of low-frequency changes in the ocean carbon reservoir. As the same periodicity is also found in carbonate and eolian dust records in the tropical ocean, it may have been caused by such low-latitude proc-esses like monsoon. According to the Quaternary records from Site 1143 and elsewhere, major ice-sheet expansion and major transition in glacial cyclicity (such as the Mid-Brunhes Event and the Mid-Pleistocene Revolution ) were all pre-ceded by reorganization in the ocean carbon reservoir ex-pressed as an episode of carbon isotope maximum (d 13Cmax), implying the role of carbon cycling in modulating the glacial periodicity. The Quaternary glacial cycles, therefore, should no more be ascribed to the physical response to insolation changes at the Northern Hemisphere high latitudes alone; rather, they have been driven by the 揹ouble forcing? a combination of processes at both high and low latitudes, and of processes in both physical (ice-sheet) and biogeochemical (carbon cycling) realms. As the Earth is now passing through a new carbon isotope maximum, it is of vital impor-tance to understand the cyclic variations in the ocean carbon reservoir and its climate impact. The Pre-Quaternary varia-tions in carbon and oxygen isotopes are characterized by their co-variations at the 400-ka eccentricity band, but the response of d 13C and d 18O to orbital forcing in the Quater-nary became diverged with the growth of the Arctic ice-sheet. The present paper is the second summary report of ODP Leg 184 to the South China Sea.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.49999560)the National Key Basic Research Special Fund(Grant G2000078500).
文摘In the spring of 1999 the Ocean Drilling Pro-gram (ODP) Leg 184 Shipboard Party cored 17 holes at 6 deep water sites in the northern and southern parts of the South China Sea (SCS). Chinese scientists actively partici-pated in the entire process of this first deep-sea drilling leg off China, from proposal to post-cruise studies. More than 30 categories of analyses have been conducted post-cruise in various Chinese laboratories on a large number of core sam-ples, and the total number of analyses exceeded 60 thousand. The major scientific achievements of the Leg 184 studies are briefly reported in three successive papers, with the first one presented here dealing with deep-sea stratigraphy and evolu-tion of climate cycles. This ODP leg has established the best deep-sea stratigraphic sequences in the Western Pacific: the 23-Ma isotope sequence from the Dong-Sha area is unique worldwide because of its continuity; the last 5-Ma sequence from the Nansha area represents one of the best 4 ODP sites worldwide with the highest time-resolution for that time in-terval, and the sequences of physical properties enable a de-cadal-scale time resolution. All these together have provided for the first time high-quality marine records for paleoenvi-ronmental studies in the Asian-Pacific region. This new set of stratigraphic records has revealed changes in climate cyclic-ity over the last 20 Ma with the fluctuating power of the 100 ka, 400 ka, 2000 ka eccentricity cycles, indicating the evolv-ing response of the climate system to orbital forcing along with the growth of the Antarctic and Northern Hemisphere ice sheets.
基金supported by the National Natural Science Foundation of China(Grant No.4999560)the National Key Basic Research Special Foundation(Grant No.G2000078500).
文摘As the third summary report of ODP Leg 184 to the South China Sea (SCS), this paper discusses the evolution of the East Asian monsoon and the SCS basin. A multi-proxy approach, involving geochemistry, micropaleontology, pollen and other analyses, was adopted for reconstructing the evolutionary history of the East Asian monsoon, which was characterized by a series of paleo-climate events especially at 8, 3.2, 2.2 and 0.4 Ma. The new record indicates similar stages in the development of the East and South Asian monsoons, with an enhanced winter monsoon over East Asia being the major difference. The rich spectrums of monsoon variability from the southern SCS also reveal other characteristic features of the low latitude ocean. Evidence for the evolution of the SCS includes the hemipelagic Oligocene sediments, implying the existence of deep water environments during the early seafloor spreading stage of the SCS basin. The four major unconformities and some remarkable diagenetic features in upper Oligocene deposits indicate the strongest tectonic events in the region. From a careful comparison of lithologies and sedimentation rates, we conclude that the prominent differences in sedimentary environments between the southern and northern SCS were established only by ~3 Ma.
基金supported by the National Natural Science Foundation of China(Grant No.49999560)the National Key Basic Research Special Fund(Grant No.G2000078500)
文摘A 5-Ma record from ODP Site 1143 has re-vealed the long-term cycles of 400—500 ka in the carbon isotope variations. The periodicity is correlatable all over the global ocean and hence indicative of low-frequency changes in the ocean carbon reservoir. As the same periodicity is also found in carbonate and eolian dust records in the tropical ocean, it may have been caused by such low-latitude proc-esses like monsoon. According to the Quaternary records from Site 1143 and elsewhere, major ice-sheet expansion and major transition in glacial cyclicity (such as the Mid-Brunhes Event and the Mid-Pleistocene Revolution ) were all pre-ceded by reorganization in the ocean carbon reservoir ex-pressed as an episode of carbon isotope maximum (d 13Cmax), implying the role of carbon cycling in modulating the glacial periodicity. The Quaternary glacial cycles, therefore, should no more be ascribed to the physical response to insolation changes at the Northern Hemisphere high latitudes alone; rather, they have been driven by the 揹ouble forcing? a combination of processes at both high and low latitudes, and of processes in both physical (ice-sheet) and biogeochemical (carbon cycling) realms. As the Earth is now passing through a new carbon isotope maximum, it is of vital impor-tance to understand the cyclic variations in the ocean carbon reservoir and its climate impact. The Pre-Quaternary varia-tions in carbon and oxygen isotopes are characterized by their co-variations at the 400-ka eccentricity band, but the response of d 13C and d 18O to orbital forcing in the Quater-nary became diverged with the growth of the Arctic ice-sheet. The present paper is the second summary report of ODP Leg 184 to the South China Sea.