Objective To examine the effects of urotensin Ⅱ (UⅡ) on the discharges of neurons in CA1 area of hippocampal slices by using extracellular recording technique. Results ①In response to the application of UⅡ (0.3...Objective To examine the effects of urotensin Ⅱ (UⅡ) on the discharges of neurons in CA1 area of hippocampal slices by using extracellular recording technique. Results ①In response to the application of UⅡ (0.3, 3.0, 30.0,300.0 nmol/L, n = 77) into the perfusate for 2 min, the spontaneous discharge rates (SDR) of 63/77 (81.8% ) neurons were significantly decreased in a dose-dependent manner. ②Pretreatment with bicuculline(BIC, 100 μmol/L), a specific GABAs receptor antagonist, led to a marked increase in the SDR of 6/7 (85.71%) neurons in an epileptiform pattern. The increased discharges were not significantly changed after UⅡ (30.0 nmol/L) was applied into the perfusate for 2 min. ③Pretreatment with picrotoxin ( PIC, 50 μmol/L), a selective blocker of Cl^- channel, led to an increase in the SDR of all 8/8( 100% ) neurons. The increased discharges were not influenced by the UⅡ (30.0 nmol/L) applied. ④Application of nitric oxide synthase (NOS) inhibitor N^G nitro-L-arginine methyl ester (L-NAME, 50μmol/L) into the perfusate for 2 min also significantly augmented the SDR of 14/16 (87.5 % ) neurons , then UⅡ (30.0 nmol/L) applied into the perfusate reduced the increased the SDR of all 14/14 ( 100% ) neurons. Conclusion These results suggest that UⅡ may decrease neuronal activity by potentiating GABAA receptor-mediated CI current in hippocampal CA1 neurons, and involved with the mediation of nitric oxide.展开更多
P CO 2 of air and seawater samples from the East China Sea (ECS) were measured in situ in autumn, 1994. Ocean currents, terrestrial fluviation, biological activities, etc.,P CO 2 characters in air and seawater were in...P CO 2 of air and seawater samples from the East China Sea (ECS) were measured in situ in autumn, 1994. Ocean currents, terrestrial fluviation, biological activities, etc.,P CO 2 characters in air and seawater were investigated. CO 2 flux and its character in the East China Sea are discussed on the basis of theP CO 2 profiles of air and seawater. It was clear that the nearshore was the source of CO 2; and that the outer sea area was the sink of CO 2; and that the shelf area of the ECS is a net sink for atmospheric CO 2 in autumn.展开更多
Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flow...Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flows, is critical to ensure personnel and asset safety. In this study, a special global coordinate-based FEM rod model was adopted to identify and quantify the effects of internal flow and hydrostatic pressure on both flexible and deepwater steel catenary risers, with emphasis on the latter. By incorporating internal flow induced forces into the model, it was found that the internal flow contributes a new term to the effective tension expression. For flexible risers in shallow water, internal flow and hydrostatic pressure made virtually no change to effective tension by merely altering the riser wall tension. In deep water the internal pressure wielded a dominant role in governing the riser effective tension and furthering the static configuration, while the effect of inflow velocity was negligible. With respect to the riser seabed interaction, both the seabed support and friction effect were considered, with the former modeled by a nonlinear quadratic spring, allowing for a consistent derivation of the tangent stiffness matrix. The presented application examples show that the nonlinear quadratic spring is, when using the catenary solution as an initial static profile, an efficient way to model the quasi-Winkler-type elastic seabed foundation in this finite element scheme.展开更多
After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible m...After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible mechanisms between Indian Ocean Dipole(IOD) and two types of El Nio were investigated.IOD events,originating from Indo-Pacific scale air-sea interaction,are composed of two modes,which are associated with EP and CP El Ni o respectively.The IOD mode related to EP El Nio events(named as IOD1) is strongest at the depth of 50 to 150 m along the equatorial Indian Ocean.Besides,it shows a quasi-symmetric distribution,stronger in the south of the Equator.The IOD mode associated with CP El Nio(named as IOD2) has strongest signal in tropical southern Indian Ocean surface.In terms of mechanisms,before EP El Nio peaks,anomalous Walker circulation produces strong anomalous easterlies in equatorial Indian Ocean,resulting in upwelling in the east,decreasing sea temperature there;a couple of anomalous anticyclones(stronger in the south) form off the Equator where warm water accumulates,and thus the IOD1 occurs.When CP El Nio develops,anomalous Walker circulation is weaker and shifts its center to the west,therefore anomalous easterlies in equatorial Indian Ocean is less strong.Besides,the anticyclone south of Sumatra strengthens,and the southerlies east of it bring cold water from higher latitudes and northerlies west of it bring warm water from lower latitudes to the 15° to 25°S zone.Meanwhile,there exists strong divergence in the east and convergence in the west part of tropical southern Indian Ocean,making sea temperature fall and rise separately.Therefore,IOD2 lies farther south.展开更多
Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. I...Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. In winter, the anomaly of the strong (weak) atmospheric cold source over the eastern plateau causes low-level anomalous north (south) winds to appear in eastern China and low-level anomaly zonal west (east) winds to prevail in the equatorial Pacific from spring to autumn. This contributes to the anomalous warm (cold) sea surface temperature the following autumn and winter. In addition, the anomalous variation of sea surface temperature over the equatorial middle and eastern Pacific in winter can influence the snow depth and intensity of the cold source over the plateau in the following winter due to variation of the summer west Pacific subtropical high.展开更多
Tide gauge data are used to investigate sea level variability offthe northwest coast of the South China Sea (SCS) in 2012, and a significant sea level elevation with a magnitude approaching 79 mm is observed. Analys...Tide gauge data are used to investigate sea level variability offthe northwest coast of the South China Sea (SCS) in 2012, and a significant sea level elevation with a magnitude approaching 79 mm is observed. Analysis suggests that an abnormal sea surface heat flux and freshwater flux may have contributed to this abnormal rise in sea level, together with the remote influence of an ENSO event. Further investigation shows that the event was dominated by the positive freshwater flux, where large volumes of water entered the ocean, and a maximum is centered to the south of Guangdong province, China. Simultaneously, a positive anomalous heat flux occurred in the northwestern part of the SCS, which is considered to have made a positive contribution to the high local sea level elevation. In addition to the heat flux, the ENSO event also had a significant effect on the event, where the La Nifia-induced northwest Pacific cyclone contributed to sea level rise over the northwestern SCS through dynamic and thermodynamic interactions.展开更多
Multi-year Simple Ocean Data Assimilation (SODA) and National Centers for Environmental Prediction (NCEP) datasets were used to investigate the leading patterns of subsurface ocean temperature anomalies (SOTA) a...Multi-year Simple Ocean Data Assimilation (SODA) and National Centers for Environmental Prediction (NCEP) datasets were used to investigate the leading patterns of subsurface ocean temperature anomalies (SOTA) and the corresponding atmospheric circulation structure in the Pacific Ocean (20°S-60°N). In this paper, the evolution of North Pacific SOTA associated with El Nifio-southern oscillation (ENSO), and their relationship with the overlying zonal/meridional atmospheric circulations were elucidated. The results indicate that: (1) there are two dominant modes for the interannual variability of the North Pacific SOTA. The primary mode is the dipole pattern of the central and western North Pacific SOTA associated with the leading mode of ENSO, and the second mode is the zonal pattern related to the second mode of ENSO. These two modes consist of the temporal-spatial variation of the SOTA in the North Pacific. (2) During the developing phase of the El Nifio event, positive (negative) SOTA appears in the western (central) portion of the North Pacific Ocean. During the mature and decaying phase of the E1 Nifio event, the western positive center and the central negative center continue to be maintained and enhanced. Meanwhile, the position of the western positive center slightly changes, and the central negative center moves eastward slowly. After the El Nifio event vanishes, the positive SOTA disappears, and the central negative SOTA becomes weak and remains in the northeastern Pacific Ocean. The results for La Nifia are generally the opposite. (3) During the El Nifio/La Nifia cycle, formation and evolution of the SOTA, with opposite signs in central and western North Pacific Ocean, resulted from vertical movement of the two northern branches of the Hadley Cell with opposite direction, as well as the positive feedback of the air-sea interaction induced by dynamic processes in the mid-latitudes. The former gives rise to the initial SOTA, and the latter intensifies SOTA. Under the forcing of these two processes, SOTA evolution is formed and sustained during the El Nino/La Nina events. Also discussed herein as background for the ENSO cycle are the possible connections among the West Pacific subtropical high, the strength of the Kuroshio near the East China Sea, the Kuroshio meanders south of Japan, the Aleutian Low, and cold advection in the central North Pacific Ocean.展开更多
We studied the structure of the Indian Ocean(IO)Meridional Overturning Circulation(MOC)by applying a nonlinear inertia theory and analyzed the coupled relationship between zonal wind stress and MOC anomalies.Our resul...We studied the structure of the Indian Ocean(IO)Meridional Overturning Circulation(MOC)by applying a nonlinear inertia theory and analyzed the coupled relationship between zonal wind stress and MOC anomalies.Our results show that the inertia theory can represent the main characteristics of the IO MOC:the subtropical cell(STC)and cross-equator cell(CEC).The stream function in equatorial and northern IO changes a sign from winter to summer.The anomalies of the zonal wind stress and stream function can be decomposed into summer monsoon mode,winter monsoon mode,and abnormal mode by using the singular vector decomposition(SVD)analysis.The first two modes correlate with the transport through 20°S and equator simultaneously whereas the relationship obscures between the third mode and transports across 20°S and equator,showing the complex air-sea interaction process.The transport experiences multi-time scale variability according to the continuous power spectrum analysis,with major periods in inter-annual and decadal scale.展开更多
The Weather Research and Forecasting (WRF) model, the Princeton Ocean Model (POM), and the wave model (WAVEWATCH III) are used to develop a coupled atmosphere-wave-ocean model, which involves different physical ...The Weather Research and Forecasting (WRF) model, the Princeton Ocean Model (POM), and the wave model (WAVEWATCH III) are used to develop a coupled atmosphere-wave-ocean model, which involves different physical pro- cesses including air-forcing, ocean feedback, wave-induced mixing and wave-current interaction. In this paper, typhoon KAEMI (2006) has been examined to investigate the effect of wind-current interaction on ocean response based on the coupled atmosphere-ocean-wave model, i.e., considering the sea surface currents in the calculation of wind stress. The results show that the wind-current interaction has a noticeable impact on the simulation of 10 m-winds. The model involving the effect of the wind-current interaction can dramatically improve the typhoon prediction. The wind-current interaction prevents excessive momentum fluxes from being transferred into the upper ocean, which contributes to a much smaller turbulence kinetic energy (TKE), vertical diffusivity, and horizontal advection and diffusion. The Sea Surface Temperature (SST) cooling induced by the wind-current interaction during the initial stage of typhoon development is so minor that the typhoon intensity is not very sen- sitive to it. When the typhoon reaches its peak, its winds can disturb thermocline, and the cold water under the thermocline is pumped up. However, this cooling process is weakened by the wind-current interaction, as ocean feedback delays the decay of the typhoon. Meanwhile, the temperature below the depth of 30 m shows an inertial oscillation with a period about 40 hours (-17°N) when sudden strong winds beat on the ocean. Due to faster currents, the significant wave height decreases as ignoring the wind-current interaction, while this process has a very small effect on the dominant wave length.展开更多
We briefly review the recent progress in marine hydrodynamics.Developments in wave-structure interaction,wave-current interaction,Rogue waves,sloshing in liquid tanks and their applications in ocean engineering,such a...We briefly review the recent progress in marine hydrodynamics.Developments in wave-structure interaction,wave-current interaction,Rogue waves,sloshing in liquid tanks and their applications in ocean engineering,such as Floating Production Storage and Offloading facility(FPSO) and Very Large Floating Structure(VLFS),are presented.展开更多
文摘Objective To examine the effects of urotensin Ⅱ (UⅡ) on the discharges of neurons in CA1 area of hippocampal slices by using extracellular recording technique. Results ①In response to the application of UⅡ (0.3, 3.0, 30.0,300.0 nmol/L, n = 77) into the perfusate for 2 min, the spontaneous discharge rates (SDR) of 63/77 (81.8% ) neurons were significantly decreased in a dose-dependent manner. ②Pretreatment with bicuculline(BIC, 100 μmol/L), a specific GABAs receptor antagonist, led to a marked increase in the SDR of 6/7 (85.71%) neurons in an epileptiform pattern. The increased discharges were not significantly changed after UⅡ (30.0 nmol/L) was applied into the perfusate for 2 min. ③Pretreatment with picrotoxin ( PIC, 50 μmol/L), a selective blocker of Cl^- channel, led to an increase in the SDR of all 8/8( 100% ) neurons. The increased discharges were not influenced by the UⅡ (30.0 nmol/L) applied. ④Application of nitric oxide synthase (NOS) inhibitor N^G nitro-L-arginine methyl ester (L-NAME, 50μmol/L) into the perfusate for 2 min also significantly augmented the SDR of 14/16 (87.5 % ) neurons , then UⅡ (30.0 nmol/L) applied into the perfusate reduced the increased the SDR of all 14/14 ( 100% ) neurons. Conclusion These results suggest that UⅡ may decrease neuronal activity by potentiating GABAA receptor-mediated CI current in hippocampal CA1 neurons, and involved with the mediation of nitric oxide.
文摘P CO 2 of air and seawater samples from the East China Sea (ECS) were measured in situ in autumn, 1994. Ocean currents, terrestrial fluviation, biological activities, etc.,P CO 2 characters in air and seawater were investigated. CO 2 flux and its character in the East China Sea are discussed on the basis of theP CO 2 profiles of air and seawater. It was clear that the nearshore was the source of CO 2; and that the outer sea area was the sink of CO 2; and that the shelf area of the ECS is a net sink for atmospheric CO 2 in autumn.
基金Supported by the National High-tech Research and Development Program of China (863 Program) under Grant No. 2010AA09Z303the Key Project of National Natural Science Foundation of China (Grant No. 50739004)the National Natural Science Foundation of China (Grant No. 11002135)
文摘Flexible risers and steel catenary risers often provide unique riser solutions for today’s deepwater field development. Accurate analysis of these slender structures, in which there are high-speed HP/HT internal flows, is critical to ensure personnel and asset safety. In this study, a special global coordinate-based FEM rod model was adopted to identify and quantify the effects of internal flow and hydrostatic pressure on both flexible and deepwater steel catenary risers, with emphasis on the latter. By incorporating internal flow induced forces into the model, it was found that the internal flow contributes a new term to the effective tension expression. For flexible risers in shallow water, internal flow and hydrostatic pressure made virtually no change to effective tension by merely altering the riser wall tension. In deep water the internal pressure wielded a dominant role in governing the riser effective tension and furthering the static configuration, while the effect of inflow velocity was negligible. With respect to the riser seabed interaction, both the seabed support and friction effect were considered, with the former modeled by a nonlinear quadratic spring, allowing for a consistent derivation of the tangent stiffness matrix. The presented application examples show that the nonlinear quadratic spring is, when using the catenary solution as an initial static profile, an efficient way to model the quasi-Winkler-type elastic seabed foundation in this finite element scheme.
基金National Key Basic Research Program of China(973 Program,2012CB417403)
文摘After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible mechanisms between Indian Ocean Dipole(IOD) and two types of El Nio were investigated.IOD events,originating from Indo-Pacific scale air-sea interaction,are composed of two modes,which are associated with EP and CP El Ni o respectively.The IOD mode related to EP El Nio events(named as IOD1) is strongest at the depth of 50 to 150 m along the equatorial Indian Ocean.Besides,it shows a quasi-symmetric distribution,stronger in the south of the Equator.The IOD mode associated with CP El Nio(named as IOD2) has strongest signal in tropical southern Indian Ocean surface.In terms of mechanisms,before EP El Nio peaks,anomalous Walker circulation produces strong anomalous easterlies in equatorial Indian Ocean,resulting in upwelling in the east,decreasing sea temperature there;a couple of anomalous anticyclones(stronger in the south) form off the Equator where warm water accumulates,and thus the IOD1 occurs.When CP El Nio develops,anomalous Walker circulation is weaker and shifts its center to the west,therefore anomalous easterlies in equatorial Indian Ocean is less strong.Besides,the anticyclone south of Sumatra strengthens,and the southerlies east of it bring cold water from higher latitudes and northerlies west of it bring warm water from lower latitudes to the 15° to 25°S zone.Meanwhile,there exists strong divergence in the east and convergence in the west part of tropical southern Indian Ocean,making sea temperature fall and rise separately.Therefore,IOD2 lies farther south.
基金Natural Science Foundation of China (90711003, 40633018)
文摘Using correlation analyses, composite analyses, and singular value decomposition, the relationship between the atmospheric cold source over the eastern Tibetan Plateau and atmospheric/ocean circulation is discussed. In winter, the anomaly of the strong (weak) atmospheric cold source over the eastern plateau causes low-level anomalous north (south) winds to appear in eastern China and low-level anomaly zonal west (east) winds to prevail in the equatorial Pacific from spring to autumn. This contributes to the anomalous warm (cold) sea surface temperature the following autumn and winter. In addition, the anomalous variation of sea surface temperature over the equatorial middle and eastern Pacific in winter can influence the snow depth and intensity of the cold source over the plateau in the following winter due to variation of the summer west Pacific subtropical high.
基金jointly funded by the National Key R&D Program of China(No.2017YFC1405100)the Basic Scientific Fund for National Public Research Institutes of China(No.2017S02)+3 种基金the Global Change and Air-Sea Interaction Program(Nos.GASI-IPOVAI-03,GASI-IPOVAI-02,GASI-02-IND-STSaut,and GASI-02-IND-STSwin)the China Postdoctoral Science Foundation(No.2017M612166)the China Ocean Mineral Resources R&D Association Project(No.DY135-E2-4-02)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406404)
文摘Tide gauge data are used to investigate sea level variability offthe northwest coast of the South China Sea (SCS) in 2012, and a significant sea level elevation with a magnitude approaching 79 mm is observed. Analysis suggests that an abnormal sea surface heat flux and freshwater flux may have contributed to this abnormal rise in sea level, together with the remote influence of an ENSO event. Further investigation shows that the event was dominated by the positive freshwater flux, where large volumes of water entered the ocean, and a maximum is centered to the south of Guangdong province, China. Simultaneously, a positive anomalous heat flux occurred in the northwestern part of the SCS, which is considered to have made a positive contribution to the high local sea level elevation. In addition to the heat flux, the ENSO event also had a significant effect on the event, where the La Nifia-induced northwest Pacific cyclone contributed to sea level rise over the northwestern SCS through dynamic and thermodynamic interactions.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)the National Basic Research Program of China (973 Program) (Nos. 2007CB411802 and 2006CB403601)
文摘Multi-year Simple Ocean Data Assimilation (SODA) and National Centers for Environmental Prediction (NCEP) datasets were used to investigate the leading patterns of subsurface ocean temperature anomalies (SOTA) and the corresponding atmospheric circulation structure in the Pacific Ocean (20°S-60°N). In this paper, the evolution of North Pacific SOTA associated with El Nifio-southern oscillation (ENSO), and their relationship with the overlying zonal/meridional atmospheric circulations were elucidated. The results indicate that: (1) there are two dominant modes for the interannual variability of the North Pacific SOTA. The primary mode is the dipole pattern of the central and western North Pacific SOTA associated with the leading mode of ENSO, and the second mode is the zonal pattern related to the second mode of ENSO. These two modes consist of the temporal-spatial variation of the SOTA in the North Pacific. (2) During the developing phase of the El Nifio event, positive (negative) SOTA appears in the western (central) portion of the North Pacific Ocean. During the mature and decaying phase of the E1 Nifio event, the western positive center and the central negative center continue to be maintained and enhanced. Meanwhile, the position of the western positive center slightly changes, and the central negative center moves eastward slowly. After the El Nifio event vanishes, the positive SOTA disappears, and the central negative SOTA becomes weak and remains in the northeastern Pacific Ocean. The results for La Nifia are generally the opposite. (3) During the El Nifio/La Nifia cycle, formation and evolution of the SOTA, with opposite signs in central and western North Pacific Ocean, resulted from vertical movement of the two northern branches of the Hadley Cell with opposite direction, as well as the positive feedback of the air-sea interaction induced by dynamic processes in the mid-latitudes. The former gives rise to the initial SOTA, and the latter intensifies SOTA. Under the forcing of these two processes, SOTA evolution is formed and sustained during the El Nino/La Nina events. Also discussed herein as background for the ENSO cycle are the possible connections among the West Pacific subtropical high, the strength of the Kuroshio near the East China Sea, the Kuroshio meanders south of Japan, the Aleutian Low, and cold advection in the central North Pacific Ocean.
基金supported by the National Basic Research Program of China(Grant No.2010CB950300)
文摘We studied the structure of the Indian Ocean(IO)Meridional Overturning Circulation(MOC)by applying a nonlinear inertia theory and analyzed the coupled relationship between zonal wind stress and MOC anomalies.Our results show that the inertia theory can represent the main characteristics of the IO MOC:the subtropical cell(STC)and cross-equator cell(CEC).The stream function in equatorial and northern IO changes a sign from winter to summer.The anomalies of the zonal wind stress and stream function can be decomposed into summer monsoon mode,winter monsoon mode,and abnormal mode by using the singular vector decomposition(SVD)analysis.The first two modes correlate with the transport through 20°S and equator simultaneously whereas the relationship obscures between the third mode and transports across 20°S and equator,showing the complex air-sea interaction process.The transport experiences multi-time scale variability according to the continuous power spectrum analysis,with major periods in inter-annual and decadal scale.
基金supported by the National Public Benefit(Meteorology)Research Foundation of China(Grant No.GYHY201106004)the National Natural Science Foundation of China(Grant No.41005029)
文摘The Weather Research and Forecasting (WRF) model, the Princeton Ocean Model (POM), and the wave model (WAVEWATCH III) are used to develop a coupled atmosphere-wave-ocean model, which involves different physical pro- cesses including air-forcing, ocean feedback, wave-induced mixing and wave-current interaction. In this paper, typhoon KAEMI (2006) has been examined to investigate the effect of wind-current interaction on ocean response based on the coupled atmosphere-ocean-wave model, i.e., considering the sea surface currents in the calculation of wind stress. The results show that the wind-current interaction has a noticeable impact on the simulation of 10 m-winds. The model involving the effect of the wind-current interaction can dramatically improve the typhoon prediction. The wind-current interaction prevents excessive momentum fluxes from being transferred into the upper ocean, which contributes to a much smaller turbulence kinetic energy (TKE), vertical diffusivity, and horizontal advection and diffusion. The Sea Surface Temperature (SST) cooling induced by the wind-current interaction during the initial stage of typhoon development is so minor that the typhoon intensity is not very sen- sitive to it. When the typhoon reaches its peak, its winds can disturb thermocline, and the cold water under the thermocline is pumped up. However, this cooling process is weakened by the wind-current interaction, as ocean feedback delays the decay of the typhoon. Meanwhile, the temperature below the depth of 30 m shows an inertial oscillation with a period about 40 hours (-17°N) when sudden strong winds beat on the ocean. Due to faster currents, the significant wave height decreases as ignoring the wind-current interaction, while this process has a very small effect on the dominant wave length.
文摘We briefly review the recent progress in marine hydrodynamics.Developments in wave-structure interaction,wave-current interaction,Rogue waves,sloshing in liquid tanks and their applications in ocean engineering,such as Floating Production Storage and Offloading facility(FPSO) and Very Large Floating Structure(VLFS),are presented.