The E1 Nifio-Southern Oscillation (ENSO) phenomenon in the tropical Pacific has been a focus of ocean and climate studies in the last few decades. Recently, the short-term climate variability in the tropical Indian ...The E1 Nifio-Southern Oscillation (ENSO) phenomenon in the tropical Pacific has been a focus of ocean and climate studies in the last few decades. Recently, the short-term climate variability in the tropical Indian Ocean has attracted increasingly more attention, especially with the proposition of the Indian Ocean Dipole (IOD) mode. However, these phenomena are often stud- ied separately without much consideration of their interaction. Observations reveal a striking out-of-phase relationship between zonal gradients of sea surface height anomaly (SSHA) and sea surface temperature anomaly (SSTA) in the tropical Indian and Pacific Oceans. Since the two oceans share the ascending branch of the Walker cells over the warm pool, the variation within one of them will affect the other. The accompanied zonal surface wind anomalies are always opposite over the two basins, thus producing a tripole structure with opposite zonal gradients of SSHA/SSTA in the two oceans. This mode of variability has been referred to as Indo-Pacific Tripole (IPT). Based on observational data analyses and a simple ocean-atmosphere coupled model, this study tries to identify the characteristics and physical mechanism of IPT with a particular emphasis on the rela- tionships among ENSO, IOD, and IPT. The model includes the basic oceanic and atmospheric variables and the feedbacks between them, and takes into account the inter-basin connection through an atmospheric bridge, thus providing a valuable framework for further research on the short-term tropical climate variability.展开更多
文摘The E1 Nifio-Southern Oscillation (ENSO) phenomenon in the tropical Pacific has been a focus of ocean and climate studies in the last few decades. Recently, the short-term climate variability in the tropical Indian Ocean has attracted increasingly more attention, especially with the proposition of the Indian Ocean Dipole (IOD) mode. However, these phenomena are often stud- ied separately without much consideration of their interaction. Observations reveal a striking out-of-phase relationship between zonal gradients of sea surface height anomaly (SSHA) and sea surface temperature anomaly (SSTA) in the tropical Indian and Pacific Oceans. Since the two oceans share the ascending branch of the Walker cells over the warm pool, the variation within one of them will affect the other. The accompanied zonal surface wind anomalies are always opposite over the two basins, thus producing a tripole structure with opposite zonal gradients of SSHA/SSTA in the two oceans. This mode of variability has been referred to as Indo-Pacific Tripole (IPT). Based on observational data analyses and a simple ocean-atmosphere coupled model, this study tries to identify the characteristics and physical mechanism of IPT with a particular emphasis on the rela- tionships among ENSO, IOD, and IPT. The model includes the basic oceanic and atmospheric variables and the feedbacks between them, and takes into account the inter-basin connection through an atmospheric bridge, thus providing a valuable framework for further research on the short-term tropical climate variability.