[Objective] In order to explore the mechanism of combined inoculation mi- croorganisms in improving coastal saline soil property and plant growth. [Method] The pot experiment was used to assess the effects of differen...[Objective] In order to explore the mechanism of combined inoculation mi- croorganisms in improving coastal saline soil property and plant growth. [Method] The pot experiment was used to assess the effects of different inoculated proportion of arbuscular mycorrhizal fungi (AMF) and Phosphate-sotubilizing fungus. Apophysomyces spartina, on growth, chlorophyll contents, P-uptake of castor bean (Ricinus communis L.) and rhizosphere soil pH values, available P concentrations, enzyme activities. [Result] The mixed inoculation of AMF and A. spartina significantly reduced soil pH value, increased soil available phosphorous contents, improved the activities of soil invertase, urease, neutral phosphatase, and alkaline phosphatase. Chlorophyll contents, P-uptake, and plant dry weight of castor bean were also in- creased. The optimal proportion of the number of AMF spores to A. spartina colonies was 28.56:11.5×10^5, which had positive effects on saline soil and could stimulate plant growth under greenhouse condition. [Conclusion] Appropriate propor- tion of AMF and A. spartina had the potential to enhance coastal saline soil prop- erty and promote castor bean growth.展开更多
The distribution of soil salinization was investigated based on GIS and field sampling in Tianjin Binhai New Area. The results showed that the average soil total salt content was 0.818%, with an average pH of 8.43, an...The distribution of soil salinization was investigated based on GIS and field sampling in Tianjin Binhai New Area. The results showed that the average soil total salt content was 0.818%, with an average pH of 8.43, and the average CI and Na+ contents were 0.27% and 0.22%, respectively. Presenting zonal distribution feature, the soil total salt content increased gradually from west to east of Binhai New Area. Statistics on the distribution areas of different salinization degrees showed that the area of non-salinzed soils only accounted for 3.18% of the total area; with an area of 107.43 km2, mild saline soil accounted for 6.34% of the total area; the area of moderate saline soil was 173.51 km2, accounting for 10.24%; and the area of sal- inzed soils was 217.36 km2, accounting for 12.82% of the total soil area. The area of saline soils (total salt content 〉0.6%) was 1 142.8 km2, accounting 67.42% of the total land area in Binhai New Area. And the areas for the soils with total salt content of 0.6%-1.0%, 1.0%-1.5%, 〉1.5% were respectively 388.47, 411.82, 342.51 km2, accounting for 22.92%, 24.3%, 20.21% of the total area.展开更多
This paper carries out quantitative analysis on the land use/cover (LU/C) change of 13anjin Binhai New Area in recent 10 years through using land use transition matrix from the three-stage LU/C classification maps o...This paper carries out quantitative analysis on the land use/cover (LU/C) change of 13anjin Binhai New Area in recent 10 years through using land use transition matrix from the three-stage LU/C classification maps of 2000, 2005 and 2010 drafted by means of the National Land Classification System of China based on Landsat TM satellite remote sensing image and the Tianjin Binhai New Area 1:50 000 relief maps. On this basis, the impact of such driving factors as the economy and population on LU/C is further analyzed. The results show that the area of the building land in Binhai New Area has increased significantly over the ten years, and the greenland, wetland, and shoals of high ecological value have been dramatically transformed into the building land and unused land for the development and construction, and the change is more significant in the later five years.展开更多
With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosi...With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosity was the highest in the Casuarina equisetifolia forest (46.168%), but the lowest in the Encalyptus robusta forest (39.46%). The soil capillary porosity was the highest in the Acacia mangium forest (22.57%), but the lowest in the secondary forest (18.95%). The soil water content was the highest in the C. equisetifolia forest, with a mean value of 27.85%, but the lowest in the secondary forest, with a mean value of 4.34%. The soil pH values were in the range of 4.81-6.59, the soils in the A. mangium forest, C. equisetifolia forest and E. robusta forest were strongly acidic (pH 4.5-5.5), and the soils in the secondary forest and C. nucifera forest were weakly acidic. The soils had organic matter contents in the range of 0.34-28.68 g/kg, and showed an order of A. mangium forest〉C. equisetifolia forest〉E. robusta forest〉secondary forest〉C. nucifera forest, with a decreasing trend with the soil depth increasing. The soil total N contents were in the range of 0.10-1.63 g/kg, the A. mangium forest showed the highest soil total N contents, while the C. nucifera forest exhibited the lowest soil total N contents; the soil total P contents were in the range of 0.21-1.74 g/kg, and the E. robusta forest had the highest soil total P contents; and the soil total K contents were in the range of 0.16-2.15 g/kg, and the A. mangium forest exhibited the highest soil total K contents. The soil available P contents were in the range of 0.98-132.46 mg/kg; and the secondary forests had the highest soil available P contents; and the soil rapidly available K contents were in the range of 3.03-27.35 mg/kg, and the C. nucifera forest exhibited the highest soil rapidly available K contents. The soil ammonium N contents were in the range of 1.38-5.15 mg/kg, and the nitrate N contents were in the range were in the range of 0.56 -3.51 mg/kg. The A. mangium forest showed the highest soil nitrate N contents (with a mean value of 2.29 mg/kg) and ammonium N contents (with a mean value of 3.93 mg/kg). For the same forest type, with the increase of soil depth, the nitrate nitrogen and ammonium nitrogen content also showed a decreasing trend.展开更多
[Objective] This study was to screen a salt-tolerant wheat variety in Dongying, a city in the center of the Yellow River Delta with a large area of coastal saline soil. [Method] Total 9 salt-tolerant, stress-resistant...[Objective] This study was to screen a salt-tolerant wheat variety in Dongying, a city in the center of the Yellow River Delta with a large area of coastal saline soil. [Method] Total 9 salt-tolerant, stress-resistant and high-yielding wheat varieties (lines) were introduced, and they were cultivated in the saline soil with total salt content of 3-4 g/kg with Dekang 961 as the control. [Result] The yields of Jinan 18, Yanjian 14 and Shanrong 3 were all significantly higher than that of Dekang 961 (P〈0.05). These three varieties (lines) all ripen before June 13 with moderate growth period that does not affect the seeding of next-season crop. [Conclusion] Jinan 18, Yanjian 14 and Shanrong 3 are suitable for planting in light and median saline soil in the Yellow River Delta.展开更多
Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the...Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the expansion of saltmarsh vegetation, and carbon sequestration. In this study, using the Chongming Dongtan Wetland in the Changjiang estuary as the study area, the spatial and temporal distribution of soil organic carbon (SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013. There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area, and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southem area. More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat. The total organic carbon (TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter; in the below-ground biomass, they gradually increased from spring to winter. The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P. australis and Spartina alterniflora marshes, but were lower in the below-ground biomass in S. mariqueter marsh. Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter. The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order: P. australis marsh 〉 S. alterniflora marsh 〉 S. mariqueter marsh 〉 bare mudflat. The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect. These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.展开更多
The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes ...The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes was carried out to sample the soils and measure their dynamic characteristics.The data was divided into 7 types based on lithology,namely,muddy clay,muddy silty clay,silt,silty clay,clay,silty sand and fine sand.Statistics of the dynamic parameters of these soils are collected to obtain the mean values of dynamic shear modulus ratio and damping ratio at different depths.Then,two typical drill holes are selected to establish the soil dynamic models to investigate the seismic response in different cases.The dynamic seismic responses of soil are calculated using the statistical values of this paper,and the values of Code(1994) and those recommended by Yuan Xiaoming et al.(2000),respectively.The applicability and pertinence of the statistical value obtained in this paper are demonstrated by the response spectrum shape,peak ground acceleration and response spectral characteristics.The results can be taken as a reference of the soil dynamic value in this area and can be used in the seismic risk assessment of engineering projects.展开更多
Rapid determination of soil organic matter(SOM) using regression models based on soil reflectance spectral data serves an important function in precision agriculture. "Deviation of arch"(DOA)-based regressio...Rapid determination of soil organic matter(SOM) using regression models based on soil reflectance spectral data serves an important function in precision agriculture. "Deviation of arch"(DOA)-based regression and partial least squares regression(PLSR)are two modeling approaches to predict SOM.However,few studies have explored the accuracy of the DOA-based regression and PLSR models.Therefore,the DOA-based regression and PLSR were applied to the visible near-infrared(VNIR) spectra to estimate SOM content in the case of various dataset divisions.A two-fold cross-validation scheme was adopted and repeated 10 000 times for rigorous evaluation of the DOA-based models in comparison with the widely used PLSR model.Soil samples were collected for SOM analysis in the coastal area of northern Jiangsu Province,China.The results indicated that both modelling methods provided reasonable estimation of SOM,with PLSR outperforming DOA-based regression in general.However,the performance of PLSR for the validation dataset decreased more noticeably.Among the four DOA-based regression models,a linear model provided the best estimation of SOM and a cutoff of SOM content(19.76 g kg^(-1)),and the performance for calibration and validation datasets was consistent.As the SOM content exceeded 19.76 g kg^(-1),SOM became more effective in masking the spectral features of other soil properties to a certain extent.This work confirmed that reflectance spectroscopy combined with PLSR could serve as a non-destructive and cost-efficient way for rapid determination of SOM when hyperspectral data were available.The DOA-based model,which requires only 3 bands in the visible spectra,also provided SOM estimation with acceptable accuracy.展开更多
Rice-wheat rotation and poplar afforestation are two typical land use types in the coastal reclaimed flatlands of eastern China. This study investigated two rice-wheat rotation lands (one reclaimed from 1995 to 2004 ...Rice-wheat rotation and poplar afforestation are two typical land use types in the coastal reclaimed flatlands of eastern China. This study investigated two rice-wheat rotation lands (one reclaimed from 1995 to 2004 and cultivated since 2005, RW1, and the other reclaimed from 1975 to 1995 and cultivated since 1996, RW2) and a poplar woodland (reclaimed from 1995 to 2004 and planted in 2004, PWl) to determine the effects of land use types and years of cultivation on soil microbial biomass and mineralizable carbon (C) in this coastal salt-affected region. The results showed that the soil in PWl remained highly salinized, whereas desalinization was observed in RWl. The total organic C (TOC) in the top soil of PWl and RW1 did not show significant differences, whereas at a soil depth of 20-30 cm, the TOC of RWl was approximately 40%-67% higher than that of PWl. The TOC of 0-30-cm soil in RW2 was approximately 37% higher than that in RW1. Microbial biomass C (MBC) and mineralizable C (MNC) exhibited the trend of RW2 〉 RWl 〉 PWl. Sufficient nutrition with more abundant C substrates resulted in higher MBC and MNC, and soil respiration rates were negatively correlated with C/N in RWl and RW2. Nutrient deficiency and high salinity played key roles in limiting MBC in PWl. These suggested that rice-wheat rotation was more beneficial than poplar afforestation for C accumulation and microbial biomass growth in the coastal salt-affected soils.展开更多
基金Supported by the China Postdoctoral Science Foundation(2012M511728)~~
文摘[Objective] In order to explore the mechanism of combined inoculation mi- croorganisms in improving coastal saline soil property and plant growth. [Method] The pot experiment was used to assess the effects of different inoculated proportion of arbuscular mycorrhizal fungi (AMF) and Phosphate-sotubilizing fungus. Apophysomyces spartina, on growth, chlorophyll contents, P-uptake of castor bean (Ricinus communis L.) and rhizosphere soil pH values, available P concentrations, enzyme activities. [Result] The mixed inoculation of AMF and A. spartina significantly reduced soil pH value, increased soil available phosphorous contents, improved the activities of soil invertase, urease, neutral phosphatase, and alkaline phosphatase. Chlorophyll contents, P-uptake, and plant dry weight of castor bean were also in- creased. The optimal proportion of the number of AMF spores to A. spartina colonies was 28.56:11.5×10^5, which had positive effects on saline soil and could stimulate plant growth under greenhouse condition. [Conclusion] Appropriate propor- tion of AMF and A. spartina had the potential to enhance coastal saline soil prop- erty and promote castor bean growth.
基金Supported by the National Key Technology R&D Program during the 11th Five-Year Plan,China (2007BAD67B01)~~
文摘The distribution of soil salinization was investigated based on GIS and field sampling in Tianjin Binhai New Area. The results showed that the average soil total salt content was 0.818%, with an average pH of 8.43, and the average CI and Na+ contents were 0.27% and 0.22%, respectively. Presenting zonal distribution feature, the soil total salt content increased gradually from west to east of Binhai New Area. Statistics on the distribution areas of different salinization degrees showed that the area of non-salinzed soils only accounted for 3.18% of the total area; with an area of 107.43 km2, mild saline soil accounted for 6.34% of the total area; the area of moderate saline soil was 173.51 km2, accounting for 10.24%; and the area of sal- inzed soils was 217.36 km2, accounting for 12.82% of the total soil area. The area of saline soils (total salt content 〉0.6%) was 1 142.8 km2, accounting 67.42% of the total land area in Binhai New Area. And the areas for the soils with total salt content of 0.6%-1.0%, 1.0%-1.5%, 〉1.5% were respectively 388.47, 411.82, 342.51 km2, accounting for 22.92%, 24.3%, 20.21% of the total area.
文摘This paper carries out quantitative analysis on the land use/cover (LU/C) change of 13anjin Binhai New Area in recent 10 years through using land use transition matrix from the three-stage LU/C classification maps of 2000, 2005 and 2010 drafted by means of the National Land Classification System of China based on Landsat TM satellite remote sensing image and the Tianjin Binhai New Area 1:50 000 relief maps. On this basis, the impact of such driving factors as the economy and population on LU/C is further analyzed. The results show that the area of the building land in Binhai New Area has increased significantly over the ten years, and the greenland, wetland, and shoals of high ecological value have been dramatically transformed into the building land and unused land for the development and construction, and the change is more significant in the later five years.
基金Supported by Special Fund for Technological Development and Research of Provincial Scientific Research Institutions(KYYS-2015-16)~~
文摘With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosity was the highest in the Casuarina equisetifolia forest (46.168%), but the lowest in the Encalyptus robusta forest (39.46%). The soil capillary porosity was the highest in the Acacia mangium forest (22.57%), but the lowest in the secondary forest (18.95%). The soil water content was the highest in the C. equisetifolia forest, with a mean value of 27.85%, but the lowest in the secondary forest, with a mean value of 4.34%. The soil pH values were in the range of 4.81-6.59, the soils in the A. mangium forest, C. equisetifolia forest and E. robusta forest were strongly acidic (pH 4.5-5.5), and the soils in the secondary forest and C. nucifera forest were weakly acidic. The soils had organic matter contents in the range of 0.34-28.68 g/kg, and showed an order of A. mangium forest〉C. equisetifolia forest〉E. robusta forest〉secondary forest〉C. nucifera forest, with a decreasing trend with the soil depth increasing. The soil total N contents were in the range of 0.10-1.63 g/kg, the A. mangium forest showed the highest soil total N contents, while the C. nucifera forest exhibited the lowest soil total N contents; the soil total P contents were in the range of 0.21-1.74 g/kg, and the E. robusta forest had the highest soil total P contents; and the soil total K contents were in the range of 0.16-2.15 g/kg, and the A. mangium forest exhibited the highest soil total K contents. The soil available P contents were in the range of 0.98-132.46 mg/kg; and the secondary forests had the highest soil available P contents; and the soil rapidly available K contents were in the range of 3.03-27.35 mg/kg, and the C. nucifera forest exhibited the highest soil rapidly available K contents. The soil ammonium N contents were in the range of 1.38-5.15 mg/kg, and the nitrate N contents were in the range were in the range of 0.56 -3.51 mg/kg. The A. mangium forest showed the highest soil nitrate N contents (with a mean value of 2.29 mg/kg) and ammonium N contents (with a mean value of 3.93 mg/kg). For the same forest type, with the increase of soil depth, the nitrate nitrogen and ammonium nitrogen content also showed a decreasing trend.
文摘[Objective] This study was to screen a salt-tolerant wheat variety in Dongying, a city in the center of the Yellow River Delta with a large area of coastal saline soil. [Method] Total 9 salt-tolerant, stress-resistant and high-yielding wheat varieties (lines) were introduced, and they were cultivated in the saline soil with total salt content of 3-4 g/kg with Dekang 961 as the control. [Result] The yields of Jinan 18, Yanjian 14 and Shanrong 3 were all significantly higher than that of Dekang 961 (P〈0.05). These three varieties (lines) all ripen before June 13 with moderate growth period that does not affect the seeding of next-season crop. [Conclusion] Jinan 18, Yanjian 14 and Shanrong 3 are suitable for planting in light and median saline soil in the Yellow River Delta.
基金Supported by the Marine Science Project of Shanghai Committee of Science and Technology,China(No.14DZ1206004)the National Natural Science Foundation of China(No.41571083)the autonomous research fund of the State Key Laboratory of Estuarine and Coastal Research,China(No.2015KYYW03)
文摘Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the expansion of saltmarsh vegetation, and carbon sequestration. In this study, using the Chongming Dongtan Wetland in the Changjiang estuary as the study area, the spatial and temporal distribution of soil organic carbon (SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013. There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area, and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southem area. More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat. The total organic carbon (TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter; in the below-ground biomass, they gradually increased from spring to winter. The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P. australis and Spartina alterniflora marshes, but were lower in the below-ground biomass in S. mariqueter marsh. Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter. The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order: P. australis marsh 〉 S. alterniflora marsh 〉 S. mariqueter marsh 〉 bare mudflat. The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect. These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.
基金sponsored by the State-level Public Welfare Scientific Research Courtyard Basic Scientific Research ProgramInstitute of Crustal Dynamics+1 种基金CEA (ZDJ2009-07ZDJ2009-23)
文摘The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes was carried out to sample the soils and measure their dynamic characteristics.The data was divided into 7 types based on lithology,namely,muddy clay,muddy silty clay,silt,silty clay,clay,silty sand and fine sand.Statistics of the dynamic parameters of these soils are collected to obtain the mean values of dynamic shear modulus ratio and damping ratio at different depths.Then,two typical drill holes are selected to establish the soil dynamic models to investigate the seismic response in different cases.The dynamic seismic responses of soil are calculated using the statistical values of this paper,and the values of Code(1994) and those recommended by Yuan Xiaoming et al.(2000),respectively.The applicability and pertinence of the statistical value obtained in this paper are demonstrated by the response spectrum shape,peak ground acceleration and response spectral characteristics.The results can be taken as a reference of the soil dynamic value in this area and can be used in the seismic risk assessment of engineering projects.
基金supported by the National Natural Science Foundation of China (No. 41201215)
文摘Rapid determination of soil organic matter(SOM) using regression models based on soil reflectance spectral data serves an important function in precision agriculture. "Deviation of arch"(DOA)-based regression and partial least squares regression(PLSR)are two modeling approaches to predict SOM.However,few studies have explored the accuracy of the DOA-based regression and PLSR models.Therefore,the DOA-based regression and PLSR were applied to the visible near-infrared(VNIR) spectra to estimate SOM content in the case of various dataset divisions.A two-fold cross-validation scheme was adopted and repeated 10 000 times for rigorous evaluation of the DOA-based models in comparison with the widely used PLSR model.Soil samples were collected for SOM analysis in the coastal area of northern Jiangsu Province,China.The results indicated that both modelling methods provided reasonable estimation of SOM,with PLSR outperforming DOA-based regression in general.However,the performance of PLSR for the validation dataset decreased more noticeably.Among the four DOA-based regression models,a linear model provided the best estimation of SOM and a cutoff of SOM content(19.76 g kg^(-1)),and the performance for calibration and validation datasets was consistent.As the SOM content exceeded 19.76 g kg^(-1),SOM became more effective in masking the spectral features of other soil properties to a certain extent.This work confirmed that reflectance spectroscopy combined with PLSR could serve as a non-destructive and cost-efficient way for rapid determination of SOM when hyperspectral data were available.The DOA-based model,which requires only 3 bands in the visible spectra,also provided SOM estimation with acceptable accuracy.
基金supported financially by the National Key Research and Development Program of China (Nos.2016YFD0200303, 2016YFC0501309, and 2016YFC0501201)the Project of the Science and Technology Service (STS) Network Initiative, Chinese Academy of Sciences (No.KFJ-SW-STS-141-2)+3 种基金the Independent Innovation Project of Jiangsu Agricultural Science & Technology, China (No.CX(15)1005)the Key Research and Development Program of Jiangsu Province, China (No.BE2015337)the National Key Technology R&D Program of China (No.2015BAD-01B03-4)the National Natural Science Foundation of China (No.41171181)
文摘Rice-wheat rotation and poplar afforestation are two typical land use types in the coastal reclaimed flatlands of eastern China. This study investigated two rice-wheat rotation lands (one reclaimed from 1995 to 2004 and cultivated since 2005, RW1, and the other reclaimed from 1975 to 1995 and cultivated since 1996, RW2) and a poplar woodland (reclaimed from 1995 to 2004 and planted in 2004, PWl) to determine the effects of land use types and years of cultivation on soil microbial biomass and mineralizable carbon (C) in this coastal salt-affected region. The results showed that the soil in PWl remained highly salinized, whereas desalinization was observed in RWl. The total organic C (TOC) in the top soil of PWl and RW1 did not show significant differences, whereas at a soil depth of 20-30 cm, the TOC of RWl was approximately 40%-67% higher than that of PWl. The TOC of 0-30-cm soil in RW2 was approximately 37% higher than that in RW1. Microbial biomass C (MBC) and mineralizable C (MNC) exhibited the trend of RW2 〉 RWl 〉 PWl. Sufficient nutrition with more abundant C substrates resulted in higher MBC and MNC, and soil respiration rates were negatively correlated with C/N in RWl and RW2. Nutrient deficiency and high salinity played key roles in limiting MBC in PWl. These suggested that rice-wheat rotation was more beneficial than poplar afforestation for C accumulation and microbial biomass growth in the coastal salt-affected soils.