The potential protective effect of marine green algae (Codium iyengerii) was examined in UV-C treated seedlings of Vigna radiata. The study comprises of three treatments of UV-C radiation (100-290 nm) dose for one...The potential protective effect of marine green algae (Codium iyengerii) was examined in UV-C treated seedlings of Vigna radiata. The study comprises of three treatments of UV-C radiation (100-290 nm) dose for one min in alternative days. This results in deformed morphological parameters, including: decrease in plant height, fresh mass of leaves, shoots and roots, as well as leaf areas, which may be attributed with decreased in the relative growth rate, carbohydrate, amino acids, and protein contents of plant. A drastic effect of UV-C radiation was found on the photosynthetic apparatus where increase in red pigmentations on the leaves surface indicates the presence of UV-C absorbing pigments instead of chloroplast pigments. Visible spectrum of leaves chlorophyll showed reduced concentration of visible absorbing pigments which showed the deleterious effect of these radiations on physiological processes of seedlings. These negative effects of UV-C radiation on plant growth were found to be decreased by the application of green seaweed (Codium iyengerii), and absorption spectrums of chloroplast contents showed that UV-C radiation inducing damages were appropriately managed by enhanced concentration of seaweeds which significantly increased morphological and physiological parameters like leaf, stem, root biomass, and plant height under UV-C radiation were observed.展开更多
文摘The potential protective effect of marine green algae (Codium iyengerii) was examined in UV-C treated seedlings of Vigna radiata. The study comprises of three treatments of UV-C radiation (100-290 nm) dose for one min in alternative days. This results in deformed morphological parameters, including: decrease in plant height, fresh mass of leaves, shoots and roots, as well as leaf areas, which may be attributed with decreased in the relative growth rate, carbohydrate, amino acids, and protein contents of plant. A drastic effect of UV-C radiation was found on the photosynthetic apparatus where increase in red pigmentations on the leaves surface indicates the presence of UV-C absorbing pigments instead of chloroplast pigments. Visible spectrum of leaves chlorophyll showed reduced concentration of visible absorbing pigments which showed the deleterious effect of these radiations on physiological processes of seedlings. These negative effects of UV-C radiation on plant growth were found to be decreased by the application of green seaweed (Codium iyengerii), and absorption spectrums of chloroplast contents showed that UV-C radiation inducing damages were appropriately managed by enhanced concentration of seaweeds which significantly increased morphological and physiological parameters like leaf, stem, root biomass, and plant height under UV-C radiation were observed.