Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, an...Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit snperparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.展开更多
In the present work, we aimed to develop alginate-coated chitosan nanoparticles for oral insulin delivery. The N-[(2-hydroxy- 3-trimethylammonium)propyl] chitosan chloride (HTCC) was synthesized, and the quatemize...In the present work, we aimed to develop alginate-coated chitosan nanoparticles for oral insulin delivery. The N-[(2-hydroxy- 3-trimethylammonium)propyl] chitosan chloride (HTCC) was synthesized, and the quatemized chitosan nanoparticles (HTCC-T NPs) were prepared by ionic gelation of HTCC using tripolyphosphate (TPP). The alginate-coated quatemized chitosan nanoparticles (HTCC-A NPs) were prepared by coating HTCC-T NPs with alginate (ALG) solution under mild agitation. Particle size, zeta potential, surface morphology, drug loading and entrapment efficiency of HTCC-A NPs were characterized using Zeta-sizer, TEM and HPLC assays. It was found that HTCC-A NPs exhibited uniform spherical particles with the size of (322.2±8.5) nm and positive charges (14.1±0.6) mV. Our data showed that the release behavior of HTCC-A NPs was quite different from that of HTCC-T NPs (without ALG coating) when incubated with various medium at different pH values in vitro, suggesting that ALG coating over the HTCC-T NPs improved the release profile of insulin from the NPs for a successful oral delivery. The ALG coating could also improve the stability of insulin against enzymatic degradation. From circular dichroism spectrum, it was revealed that HTCC-A NPs were capable of maintaining the conformation of insulin. The relative pharmacological bioavailability of HTCC-A NPs was 8.0%±2.5% by intraduodenal administration. The HTCC-A NPs significantly increased (P〈0.05) the relative pharmacological availability (2.2 folds) compared with HTCC-T NPs after oral administration. HTCC-A NPs significantly enhanced the in vivo oral absorption of insulin and exhibited promising potentials for oral delivery.展开更多
文摘Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit snperparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.
基金NSFC projects(Grant No.81273455 and 81072597)grants from Ministry of Education(Grant No.NCET-11-0014 and BM U20110263)the funding support from State Key Laboratory of Long-acting and Targeting Drug Delivery System,LUYE PHARMA
文摘In the present work, we aimed to develop alginate-coated chitosan nanoparticles for oral insulin delivery. The N-[(2-hydroxy- 3-trimethylammonium)propyl] chitosan chloride (HTCC) was synthesized, and the quatemized chitosan nanoparticles (HTCC-T NPs) were prepared by ionic gelation of HTCC using tripolyphosphate (TPP). The alginate-coated quatemized chitosan nanoparticles (HTCC-A NPs) were prepared by coating HTCC-T NPs with alginate (ALG) solution under mild agitation. Particle size, zeta potential, surface morphology, drug loading and entrapment efficiency of HTCC-A NPs were characterized using Zeta-sizer, TEM and HPLC assays. It was found that HTCC-A NPs exhibited uniform spherical particles with the size of (322.2±8.5) nm and positive charges (14.1±0.6) mV. Our data showed that the release behavior of HTCC-A NPs was quite different from that of HTCC-T NPs (without ALG coating) when incubated with various medium at different pH values in vitro, suggesting that ALG coating over the HTCC-T NPs improved the release profile of insulin from the NPs for a successful oral delivery. The ALG coating could also improve the stability of insulin against enzymatic degradation. From circular dichroism spectrum, it was revealed that HTCC-A NPs were capable of maintaining the conformation of insulin. The relative pharmacological bioavailability of HTCC-A NPs was 8.0%±2.5% by intraduodenal administration. The HTCC-A NPs significantly increased (P〈0.05) the relative pharmacological availability (2.2 folds) compared with HTCC-T NPs after oral administration. HTCC-A NPs significantly enhanced the in vivo oral absorption of insulin and exhibited promising potentials for oral delivery.