A functional microcapsule was prepared by encapsulating the fine crystalline ammonium tungstophosphate (AWP) in calcium alginate polymer (CaALG). The characterization of AWP-CaALG microcapsule was examined by SEM ...A functional microcapsule was prepared by encapsulating the fine crystalline ammonium tungstophosphate (AWP) in calcium alginate polymer (CaALG). The characterization of AWP-CaALG microcapsule was examined by SEM and EPMA. The ad- sorption behavior of Cs(Ⅰ), Rb(Ⅰ), Sr(Ⅱ), Pd(II), Ru(Ⅲ), Rh(Ⅲ), La(Ⅲ), Ce(Ⅲ), Dy(Ⅲ) and Zr(IV) was investigated by the batch method. The batch experiments were carried out by varying the shaking times, HNO3 concentration, and initial concen- tration of metal ions. Relatively large K+ values above 105 cm3/g for Cs(I) were obtained in the range of 0.1-5 M HNO3, re- sulting in a separation factor of Cs/Rb exceeding 102. In contrast, the K+ values of Sr(II), Pd(II), Ru(Ⅲ), La(Ⅲ), Dy(Ⅲ), Ce(Ⅲ) and Zr(IV) were considerably lower than 50 cm3/g. The K+ value of Cs(1) decreased in the order of the coexisting ions, H+ 〉 Na+ 〉〉 NH4+, and a linear relationship with a slop of about -1 was obtained between log Kd and log [NH4+] ([NH4+] 〉 0.01 M) The adsorption of Cs(I) was found to be controlled by chemisorption mechanism, and followed a Langmuir-type adsorption equation. A high uptake percentage of 99.4% for Cs(I) was obtained by using the dissolved solutions of spent fuel from FBR-JOYO (JAEA).展开更多
文摘A functional microcapsule was prepared by encapsulating the fine crystalline ammonium tungstophosphate (AWP) in calcium alginate polymer (CaALG). The characterization of AWP-CaALG microcapsule was examined by SEM and EPMA. The ad- sorption behavior of Cs(Ⅰ), Rb(Ⅰ), Sr(Ⅱ), Pd(II), Ru(Ⅲ), Rh(Ⅲ), La(Ⅲ), Ce(Ⅲ), Dy(Ⅲ) and Zr(IV) was investigated by the batch method. The batch experiments were carried out by varying the shaking times, HNO3 concentration, and initial concen- tration of metal ions. Relatively large K+ values above 105 cm3/g for Cs(I) were obtained in the range of 0.1-5 M HNO3, re- sulting in a separation factor of Cs/Rb exceeding 102. In contrast, the K+ values of Sr(II), Pd(II), Ru(Ⅲ), La(Ⅲ), Dy(Ⅲ), Ce(Ⅲ) and Zr(IV) were considerably lower than 50 cm3/g. The K+ value of Cs(1) decreased in the order of the coexisting ions, H+ 〉 Na+ 〉〉 NH4+, and a linear relationship with a slop of about -1 was obtained between log Kd and log [NH4+] ([NH4+] 〉 0.01 M) The adsorption of Cs(I) was found to be controlled by chemisorption mechanism, and followed a Langmuir-type adsorption equation. A high uptake percentage of 99.4% for Cs(I) was obtained by using the dissolved solutions of spent fuel from FBR-JOYO (JAEA).