海表温度是重要的环境特征指标。为了实时高精度测量海表皮温,中国海洋大学研制了一台海表测温辐射测量系统(The First Infrared Radiometer for measurements of Skin SST made by Ocean University of China,OUCFIRST,简称FIRST系统)...海表温度是重要的环境特征指标。为了实时高精度测量海表皮温,中国海洋大学研制了一台海表测温辐射测量系统(The First Infrared Radiometer for measurements of Skin SST made by Ocean University of China,OUCFIRST,简称FIRST系统)。FIRST系统使用热释电辐射传感器,测量海表、天空和内部标准黑体的辐射量,对测量的海表辐射进行实时校正,得到精确的海表辐射值,通过反演计算,得到高精度海表皮温。FIRST系统内部使用了可溯源的测温仪,可测量标准黑体温度,该系统采用了自容式设计,测温精度高且部署容易。FIRST系统参加了2016年在英国国家物理实验室(National Physical Laboratory)NPL进行的联合观测实验,在实验室测量了标准黑体,在室外湖面进行了实测,测量结果优于33mK,测量准确度位列各参测仪器的第二名。实验结果表明,FIRST系统具有较好的测量精度,可用于海表皮温的高精度测量。展开更多
全球海洋盐度的分布和变化对于海洋生态系统和海洋气候系统都是非常重要的参数。盐度的被动微波辐射遥感虽然在L波段灵敏度最高,但是其在L波段的灵敏度低于其它许多变量,因此对盐度反演模型精度要求很高。通过介电常数模型、海表粗糙表...全球海洋盐度的分布和变化对于海洋生态系统和海洋气候系统都是非常重要的参数。盐度的被动微波辐射遥感虽然在L波段灵敏度最高,但是其在L波段的灵敏度低于其它许多变量,因此对盐度反演模型精度要求很高。通过介电常数模型、海表粗糙表面波谱模型和电磁散射模型的融合,并经过实验数据的比较,可以获得描述海表辐射率的理论模型表达式。概述了目前常见的L波段描述海表辐射率的理论模型和几种半经验模型,利用不同的组合模型Two-scale与Durden&Vesecky x 2结合、SSA与Elfouhaily结合和利用亮温依靠速度的Hollinger和Camps等人的半经验线性模型以及Gabarro等人的半经验模型,归纳了Gabarro等人利用WISE试验数据和EuroSTARRS数据反演盐度的结果,并依据盐度反演的质量对这些模型进行了评估。展开更多
The basic principles of sea surface temperature (SST) remote sensing using infrared and microwave radiometers are introduced, and the differences between two sensors for retrieving sea surface temperature are invest...The basic principles of sea surface temperature (SST) remote sensing using infrared and microwave radiometers are introduced, and the differences between two sensors for retrieving sea surface temperature are investigated. The ground resolution, atmospheric effect, sea surface wind, skin depth and so on have important influence on precision of sea surface temperature retrieved by two sensors. The better understanding of the advantage and disadvantage of sea surface temperature detected by infrared and microwave radiometers would help us to imply SST remote sensing data more effectively and correctly.展开更多
Based on 48-year (1958-2006) ocean reanalysis data of Simple Ocean Data Assimilation and 23-year (1984-2006) global ocean-surface heat flux products developed by the Objectively Analyzed Air-Sea Heat Flux Project, mer...Based on 48-year (1958-2006) ocean reanalysis data of Simple Ocean Data Assimilation and 23-year (1984-2006) global ocean-surface heat flux products developed by the Objectively Analyzed Air-Sea Heat Flux Project, meridional variation of the western Pacific Warm Pool (WPWP) is addressed. The results show that there is a significant expansion of the northern edge of the WPWP in the late 1990s and early 2000s. This variation is mainly within 120°E-160°E by 8°N-20°N, we define this region (120°E-160°E by 8°N-20°N) as the core region. Furthermore, analyses on upper ocean heat budget show that the short wave radiation plays a key role in the northward expansion of the northern edge of the WPWP in the core region. It is proved that the northward expansion may be caused by the change of the mixed layer which became shallower in 1994-2006 compared with 1984-1993 in the study region. The short wave radiation flux distribution within the shallower mixed layer leads to a positive anomaly in seawater temperature, promoting the northward expansion of the WPWP.展开更多
Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that ...Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that during 1979-1993 (27). During the TC peak season (July-September, JAS), there were 43 TCs fi'om 1994-2008, but only 17 during 1979-1993. For July in particular, 13 TCs formed from 1994-2008, but there were none during 1979-1993. The change in TC number is associated with changes of key environmental conditions in atmosphere and ocean. Compared to 1979-1993, the subtropical high was significantly weaker and was displaced more eastward during 1994-2008. In the former period, a stronger subtropical high induced downward flow, inhibiting TC formation. In the latter period, vertical wind shear and outgoing longwave radiation all weakened. Mid-level (850-500 hPa) humidity, and relative vorticity were higher. Sea surface temperature and upper layer heat content were also higher in the area. All these factors favor TC genesis during the latter period. The decadal change of TC genesis led to more landfalling TCs in Southern China during the period 1994-2008, which contributed to an abrupt increase in regional rainfall.展开更多
In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical adv...In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical advection cooling case. Sea surface temperature(SST) and specific humidity(SH) show strong gradients from south to north, in which warm water is located in the south and consequently, moisture is larger in the south than in the north due to evaporation processes. After fog formation, evaporation process provides more moisture into the air and further contributes to fog evolution. The sea fog event was reproduced by the Regional Atmospheric Modeling System(RAMS) reasonably. The roles of important physical processes such as radiation, turbulence as well as atmospheric stratification in sea fog's structure and its formation mechanisms were analyzed using the model results. The roles of long wave radiation cooling, turbulence as well as atmospheric stratification were analyzed based on the modeling results. It is found that the long wave radiative cooling at the fog top plays an important role in cooling down the fog layer through turbulence mixing. The fog top cooling can overpower warming from the surface. Sea fog develops upward with the aid of turbulence. The buoyancy term, i.e., the unstable layer, contributes to the generation of TKE in the fog region. However, the temperature inversion layer prevents fog from growing upward.展开更多
Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,th...Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,this paper shows that there was an intense warming trend over Siberia(60°–75°N,70°–130°E)in June during 1979–2020.The linear trend of the June surface air temperature is 0.90℃/10 yr over Siberia,which is much larger than the area with the same latitudes(60°–75°N,0°–360°,trend of 0.46℃/10 yr).The warming over Siberia extends from the surface to about 300 h Pa.Increased geopotential height in the mid-to-upper troposphere plays an important role in shaping the Siberian warming,which favors more shortwave radiation reaching the surface and further heating the overlying atmosphere via upward turbulent heat flux and longwave radiation.The Siberian warming is closely related to Arctic sea-ice decline,especially the sea ice over northern Barents Sea and Kara Sea.Numerical experiments carried out using and atmospheric general circulation model(IAP-AGCM4.1)confirmed the contribution of the Arctic sea-ice decline to the Siberian warming and the related changes in circulations and surface fluxes.展开更多
Based on four sets of numerical simulations prescribed with atmospheric radiative forcing and sea surface temperature(SST) forcing in the Community Atmospheric Model version 3(CAM3), the interannual and interdecadal v...Based on four sets of numerical simulations prescribed with atmospheric radiative forcing and sea surface temperature(SST) forcing in the Community Atmospheric Model version 3(CAM3), the interannual and interdecadal variabilities of the Antarctic oscillation(AAO) during austral summer were studied. It was found that the interannual variability is mainly driven by SST forcing. On the other hand, atmospheric radiative forcing plays a major role in the interdecadal variability. A cooling trend was found in the high latitudes of the Southern Hemisphere(SH) when atmospheric radiative forcing was specified in the model. This cooling trend tended to enhance the temperature gradient between the mid and high latitudes in the SH, inducing a transition of the AAO from a negative to a positive phase on the interdecadal timescale. The cooling trend was also partly weakened by the SST forcing, leading to a better simulation compared with the purely atmospheric radiative forcing run. Therefore, SST forcing cannot be ignored, although it is not as important as atmospheric radiative forcing.展开更多
This study compared basic warming patterns among three typical warm periods — the midHolocene(MH), Medieval Warm Period(MWP), and the twentieth century warming(20CW) — and carried out a comprehensive heat budg...This study compared basic warming patterns among three typical warm periods — the midHolocene(MH), Medieval Warm Period(MWP), and the twentieth century warming(20CW) — and carried out a comprehensive heat budget analysis using four experiments simulated by the Flexible Global Ocean–Atmosphere–Land System model, Spectral Version 2(FGOALS-s2). The model simulates similar spatial warming patterns in all three warm periods, e.g. stronger warming appears in the high latitudes. However, changes in surface air temperature(SAT) over the tropical regions are different: a significant warming occurs in the 20 CW and MWP but a significant cooling in the MH. The heat budget analysis suggested that SAT changes are mainly induced by the heat flux. In the MH, the insolation and positive snow and ice feedback are responsible for the warming in the Southern Ocean but the wind anomalies and decreased downward longwave radiation(DLR) induce the cooling in the tropics. In the 20 CW, the decreased shortwave radiation and increased sea surface temperature dependency of evaporation dampen the warming in the tropics. In the MWP, the shortwave radiation induces the Southern Ocean warming, but the DLR and wind anomalies warm the SAT in the tropics. The simulated ocean temperature and ocean heat content anomalies are different in the upper ocean(above 1500 m), which are mainly induced by the wind stress changes, but similar in the deep ocean in all three warm periods.展开更多
Previous analyses on the estimates of water vapor and cloud-related feedbacks in the tropics usually use observations over the Earth Radiation Budget Experiment (ERBE) period (1985-89). To examine the sample depen...Previous analyses on the estimates of water vapor and cloud-related feedbacks in the tropics usually use observations over the Earth Radiation Budget Experiment (ERBE) period (1985-89). To examine the sample dependence of previous estimates, the authors extend the analysis to two additional periods: 1990-94 and 1995-99. The results confirm our hypothesis, i.e., the values of the feedbacks depend on the period of data coverage. The differences in the feedbacks from cloud radiative forcings (CRFs) estimated from the three periods are particularly significant. Two possible causes for these differences are proposed. First, a regime behavior in the CRFs-Sea Surface Temperature Anomaly (SSTA) rela- tionship over the cold tongue region is revealed: when SSTA is below -0.5℃, the CRF anomalies are insensitive to the SSTA; when the SSTA is between -0.5℃ and 2.0℃, the CRF anomalies are positively correlated with the SSTA; however, when the SSTA exceeds 2.0℃, the CRF anomalies decrease with the SSTA. This regime behavior is due to the regime behavior of cirrostratus and deep convective clouds. Second, the CRFs-SSTA relationship is regulated by remote forcings. Warming of the far eastern equatorial Pacific would reduce the water vapor convergence over the central Pacific by weakening the trade wind over the southeastern Pacific, thereby reducing the feeding of moisture to the convective flow. The results suggest that CRFs-SSTA relationships during ENSO events are nonlinear and strongly depend on the magnitude and the spatial distribution of the SSTA.展开更多
文摘海表温度是重要的环境特征指标。为了实时高精度测量海表皮温,中国海洋大学研制了一台海表测温辐射测量系统(The First Infrared Radiometer for measurements of Skin SST made by Ocean University of China,OUCFIRST,简称FIRST系统)。FIRST系统使用热释电辐射传感器,测量海表、天空和内部标准黑体的辐射量,对测量的海表辐射进行实时校正,得到精确的海表辐射值,通过反演计算,得到高精度海表皮温。FIRST系统内部使用了可溯源的测温仪,可测量标准黑体温度,该系统采用了自容式设计,测温精度高且部署容易。FIRST系统参加了2016年在英国国家物理实验室(National Physical Laboratory)NPL进行的联合观测实验,在实验室测量了标准黑体,在室外湖面进行了实测,测量结果优于33mK,测量准确度位列各参测仪器的第二名。实验结果表明,FIRST系统具有较好的测量精度,可用于海表皮温的高精度测量。
文摘全球海洋盐度的分布和变化对于海洋生态系统和海洋气候系统都是非常重要的参数。盐度的被动微波辐射遥感虽然在L波段灵敏度最高,但是其在L波段的灵敏度低于其它许多变量,因此对盐度反演模型精度要求很高。通过介电常数模型、海表粗糙表面波谱模型和电磁散射模型的融合,并经过实验数据的比较,可以获得描述海表辐射率的理论模型表达式。概述了目前常见的L波段描述海表辐射率的理论模型和几种半经验模型,利用不同的组合模型Two-scale与Durden&Vesecky x 2结合、SSA与Elfouhaily结合和利用亮温依靠速度的Hollinger和Camps等人的半经验线性模型以及Gabarro等人的半经验模型,归纳了Gabarro等人利用WISE试验数据和EuroSTARRS数据反演盐度的结果,并依据盐度反演的质量对这些模型进行了评估。
文摘The basic principles of sea surface temperature (SST) remote sensing using infrared and microwave radiometers are introduced, and the differences between two sensors for retrieving sea surface temperature are investigated. The ground resolution, atmospheric effect, sea surface wind, skin depth and so on have important influence on precision of sea surface temperature retrieved by two sensors. The better understanding of the advantage and disadvantage of sea surface temperature detected by infrared and microwave radiometers would help us to imply SST remote sensing data more effectively and correctly.
基金Supported by the National Basic Research Program of China (973 Program)(Nos.2010CB950402,2012CB417402)the National Natural Science Foundation of China (No.41106018)
文摘Based on 48-year (1958-2006) ocean reanalysis data of Simple Ocean Data Assimilation and 23-year (1984-2006) global ocean-surface heat flux products developed by the Objectively Analyzed Air-Sea Heat Flux Project, meridional variation of the western Pacific Warm Pool (WPWP) is addressed. The results show that there is a significant expansion of the northern edge of the WPWP in the late 1990s and early 2000s. This variation is mainly within 120°E-160°E by 8°N-20°N, we define this region (120°E-160°E by 8°N-20°N) as the core region. Furthermore, analyses on upper ocean heat budget show that the short wave radiation plays a key role in the northward expansion of the northern edge of the WPWP in the core region. It is proved that the northward expansion may be caused by the change of the mixed layer which became shallower in 1994-2006 compared with 1984-1993 in the study region. The short wave radiation flux distribution within the shallower mixed layer leads to a positive anomaly in seawater temperature, promoting the northward expansion of the WPWP.
基金Supported by the National Basic Research Program of China (973 Program)(No.2011CB403500)the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX2-YW-Q11-02, XDA05090404)+1 种基金the National Basic Research Program of China (973 Program) (No. 2010CB950302)the Qianren and Changjiang Scholar Projects, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)and SOEST-8711 & IPRC-901
文摘Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that during 1979-1993 (27). During the TC peak season (July-September, JAS), there were 43 TCs fi'om 1994-2008, but only 17 during 1979-1993. For July in particular, 13 TCs formed from 1994-2008, but there were none during 1979-1993. The change in TC number is associated with changes of key environmental conditions in atmosphere and ocean. Compared to 1979-1993, the subtropical high was significantly weaker and was displaced more eastward during 1994-2008. In the former period, a stronger subtropical high induced downward flow, inhibiting TC formation. In the latter period, vertical wind shear and outgoing longwave radiation all weakened. Mid-level (850-500 hPa) humidity, and relative vorticity were higher. Sea surface temperature and upper layer heat content were also higher in the area. All these factors favor TC genesis during the latter period. The decadal change of TC genesis led to more landfalling TCs in Southern China during the period 1994-2008, which contributed to an abrupt increase in regional rainfall.
基金supported by the 201205010-5 program of the State Oceanic Administration of China and the Natural Science Foundation of China under the grant 41306028partly supported by the National Natural Science Foundation of China under the grant number, 406750060 and 41275049+5 种基金the Chinese Ministry of Science and Technology under the 863 Project grant number 2006 AA09Z151the Chinese Meteorological Administration under the grant number GYHY(QX)200706031the China Scholarship Council for the financial support to his study in NOAA from 2008 to 2010, which enables him to participate in the present worksupported by China postdoctoral funding under the grant 2012M511545the Natural Science Foundation of China under the grant 41305086supported by the open project of the Lab. of Physical Oceanography, Ocean University of China
文摘In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical advection cooling case. Sea surface temperature(SST) and specific humidity(SH) show strong gradients from south to north, in which warm water is located in the south and consequently, moisture is larger in the south than in the north due to evaporation processes. After fog formation, evaporation process provides more moisture into the air and further contributes to fog evolution. The sea fog event was reproduced by the Regional Atmospheric Modeling System(RAMS) reasonably. The roles of important physical processes such as radiation, turbulence as well as atmospheric stratification in sea fog's structure and its formation mechanisms were analyzed using the model results. The roles of long wave radiation cooling, turbulence as well as atmospheric stratification were analyzed based on the modeling results. It is found that the long wave radiative cooling at the fog top plays an important role in cooling down the fog layer through turbulence mixing. The fog top cooling can overpower warming from the surface. Sea fog develops upward with the aid of turbulence. The buoyancy term, i.e., the unstable layer, contributes to the generation of TKE in the fog region. However, the temperature inversion layer prevents fog from growing upward.
基金supported by the National Key R&D Pro-gram of China[grant number 2017YFE0111800]the National Natural Science Foundation of China[grant numbers 41790472 and 41822502]。
文摘Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,this paper shows that there was an intense warming trend over Siberia(60°–75°N,70°–130°E)in June during 1979–2020.The linear trend of the June surface air temperature is 0.90℃/10 yr over Siberia,which is much larger than the area with the same latitudes(60°–75°N,0°–360°,trend of 0.46℃/10 yr).The warming over Siberia extends from the surface to about 300 h Pa.Increased geopotential height in the mid-to-upper troposphere plays an important role in shaping the Siberian warming,which favors more shortwave radiation reaching the surface and further heating the overlying atmosphere via upward turbulent heat flux and longwave radiation.The Siberian warming is closely related to Arctic sea-ice decline,especially the sea ice over northern Barents Sea and Kara Sea.Numerical experiments carried out using and atmospheric general circulation model(IAP-AGCM4.1)confirmed the contribution of the Arctic sea-ice decline to the Siberian warming and the related changes in circulations and surface fluxes.
基金supported by the Carbon Budget and Related Issues of the Chinese Academy of Sciences (Grant No. XDA05110201)the National Basic Research Program of China (Grant No. 2010CB951901)
文摘Based on four sets of numerical simulations prescribed with atmospheric radiative forcing and sea surface temperature(SST) forcing in the Community Atmospheric Model version 3(CAM3), the interannual and interdecadal variabilities of the Antarctic oscillation(AAO) during austral summer were studied. It was found that the interannual variability is mainly driven by SST forcing. On the other hand, atmospheric radiative forcing plays a major role in the interdecadal variability. A cooling trend was found in the high latitudes of the Southern Hemisphere(SH) when atmospheric radiative forcing was specified in the model. This cooling trend tended to enhance the temperature gradient between the mid and high latitudes in the SH, inducing a transition of the AAO from a negative to a positive phase on the interdecadal timescale. The cooling trend was also partly weakened by the SST forcing, leading to a better simulation compared with the purely atmospheric radiative forcing run. Therefore, SST forcing cannot be ignored, although it is not as important as atmospheric radiative forcing.
基金jointly supported by the National Natural Science Foundation of China[grant numbers 41406045 and 41376002]National Basic Research Program of China[grant number 2013CB956204]‘Strategic Priority Research Program on Climate Change:Carbon Budget and Relevant Issues’ of the Chinese Academy of Sciences[grant number XDA05110302]
文摘This study compared basic warming patterns among three typical warm periods — the midHolocene(MH), Medieval Warm Period(MWP), and the twentieth century warming(20CW) — and carried out a comprehensive heat budget analysis using four experiments simulated by the Flexible Global Ocean–Atmosphere–Land System model, Spectral Version 2(FGOALS-s2). The model simulates similar spatial warming patterns in all three warm periods, e.g. stronger warming appears in the high latitudes. However, changes in surface air temperature(SAT) over the tropical regions are different: a significant warming occurs in the 20 CW and MWP but a significant cooling in the MH. The heat budget analysis suggested that SAT changes are mainly induced by the heat flux. In the MH, the insolation and positive snow and ice feedback are responsible for the warming in the Southern Ocean but the wind anomalies and decreased downward longwave radiation(DLR) induce the cooling in the tropics. In the 20 CW, the decreased shortwave radiation and increased sea surface temperature dependency of evaporation dampen the warming in the tropics. In the MWP, the shortwave radiation induces the Southern Ocean warming, but the DLR and wind anomalies warm the SAT in the tropics. The simulated ocean temperature and ocean heat content anomalies are different in the upper ocean(above 1500 m), which are mainly induced by the wind stress changes, but similar in the deep ocean in all three warm periods.
基金supported by the National Key Technologies R&D Program of China (2007BAC29B03)the National Natural Science Foundation of China (40890054 and 40821092)
文摘Previous analyses on the estimates of water vapor and cloud-related feedbacks in the tropics usually use observations over the Earth Radiation Budget Experiment (ERBE) period (1985-89). To examine the sample dependence of previous estimates, the authors extend the analysis to two additional periods: 1990-94 and 1995-99. The results confirm our hypothesis, i.e., the values of the feedbacks depend on the period of data coverage. The differences in the feedbacks from cloud radiative forcings (CRFs) estimated from the three periods are particularly significant. Two possible causes for these differences are proposed. First, a regime behavior in the CRFs-Sea Surface Temperature Anomaly (SSTA) rela- tionship over the cold tongue region is revealed: when SSTA is below -0.5℃, the CRF anomalies are insensitive to the SSTA; when the SSTA is between -0.5℃ and 2.0℃, the CRF anomalies are positively correlated with the SSTA; however, when the SSTA exceeds 2.0℃, the CRF anomalies decrease with the SSTA. This regime behavior is due to the regime behavior of cirrostratus and deep convective clouds. Second, the CRFs-SSTA relationship is regulated by remote forcings. Warming of the far eastern equatorial Pacific would reduce the water vapor convergence over the central Pacific by weakening the trade wind over the southeastern Pacific, thereby reducing the feeding of moisture to the convective flow. The results suggest that CRFs-SSTA relationships during ENSO events are nonlinear and strongly depend on the magnitude and the spatial distribution of the SSTA.