期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用预训练模型提升光谱特征提取性能的有效性研究
1
作者 任菊香 刘忠宝 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第12期3480-3484,共5页
观测技术的发展带来了海量的光谱数据。如何对这些数据进行自动分类受到广大研究人员的关注,其关键是光谱数据的特征提取。鉴于人工处理方式的局限性,主流研究大多采用机器学习算法进行光谱数据的特征提取。然而,这些机器学习算法由于... 观测技术的发展带来了海量的光谱数据。如何对这些数据进行自动分类受到广大研究人员的关注,其关键是光谱数据的特征提取。鉴于人工处理方式的局限性,主流研究大多采用机器学习算法进行光谱数据的特征提取。然而,这些机器学习算法由于时空复杂度过高无法处理海量光谱数据。近年来涌现的预训练模型具有优良的特征提取能力,但目前鲜有文献对该模型对光谱数据有效性问题进行探讨。因此,将恒星光谱数据作为研究对象,分别引入BERT、ALBERT、GTP等预训练模型和卷积神经网络(CNN)来对恒星光谱数据进行特征提取和分类处理,通过比较实验结果来检验这几类预训练模型在恒星光谱特征提取方面的有效性。利用Python编程语言编写光谱分类程序。在预训练模型特征提取的基础上,利用TensorFlow1.14中的CNN模型进行光谱类型判定。实验用到的数据集是SDSS DR10恒星光谱数据集,包括K型、F型、G型。利用网格搜索和5倍交叉验证法获得实验最优参数。在相同训练数据集条件下,与ALBERT、GPT相比,BERT模型的分类正确率均最高。从平均正确率看,在K型、F型、G型恒星数据集上,BERT模型的平均正确率比ALBERT分别高0.0251、0.0215和0.0225,比GPT分别高0.0497、0.0424和0.0432。分析实验结果可以得出如下结论:(1)恒星光谱分类正确率随训练数据规模的增大而提高;(2)在训练数据规模占比相同的情况下,同一模型在K型恒星数据集上的分类正确率最高,其次是F型恒星数据集,G型恒星数据集最低;(3)与ALBERT、GPT相比,BERT模型具有具有更优的特征提取能力。 展开更多
关键词 海量光谱数据 光谱特征提取 预训练模型 有效性验证
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部