Time series of sea surface temperature (SST), wind speed and significant wave height (SWH) from meteorological buoys of the National Data Buoy Center (NDBC) are useful for studying the interannual variability an...Time series of sea surface temperature (SST), wind speed and significant wave height (SWH) from meteorological buoys of the National Data Buoy Center (NDBC) are useful for studying the interannual variability and trend of these quantities at the buoy areas. The measurements from 4 buoys (B51001, B51002, B51003 and B51004) in the Hawaii area are used to study the responses of the quantities to El Nino and Southern Oscillation (ENSO). Long-term averages of these data reflect precise seasonal and climatological characteristics of SST, wind speed and SWH around the Hawaii area. Buoy observations from B51001 suggest a significant warming trend which is, however, not very clear from the other three buoys. Compared with the variability of SST and SWH, the wind speeds from the buoy observations show an increasing trend. The impacts of EI Nifio on SST and wind waves are also shown. Sea level data observed by altimeter during October 1992 to September 2006 are analyzed to investigate the variability of sea level in the Hawaii area. The results also show an increasing trend in sea level anomaly (SLA). The low-passed SLA in the Hawaii area is consistent with the inverse phase of the low-passed SOI (Southern Oscillation Index). Compared with the low-passed SOl and PDO (Pacific Decadal Oscillation), the low-passed PNA (Pacific-North America Index) has a better correlation with the low-passed SEA in the Hawaii area.展开更多
We compared nonlinear principal component analysis(NLPCA) with linear principal component analysis(LPCA) with the data of sea surface wind anomalies(SWA),surface height anomalies(SSHA),and sea surface temperature anom...We compared nonlinear principal component analysis(NLPCA) with linear principal component analysis(LPCA) with the data of sea surface wind anomalies(SWA),surface height anomalies(SSHA),and sea surface temperature anomalies(SSTA),taken in the South China Sea(SCS) between 1993 and 2003.The SCS monthly data for SWA,SSHA and SSTA(i.e.,the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA,with only three leading modes retained.The first three modes of SWA,SSHA,and SSTA of LPCA explained 86%,71%,and 94% of the total variance in the original data,respectively.Thus,the three associated time coefficient functions(TCFs) were used as the input data for NLPCA network.The NLPCA was made based on feed-forward neural network models.Compared with classical linear PCA,the first NLPCA mode could explain more variance than linear PCA for the above data.The nonlinearity of SWA and SSHA were stronger in most areas of the SCS.The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%,and 60.24% versus 50.43%,respectively for the first LPCA mode.Conversely,the nonlinear SSTA,localized in the northern SCS and southern continental shelf region,resulted in little improvement in the explanation of the variance for the first NLPCA.展开更多
The Okinawa Trough is a natural laboratory for the study of air-sea interaction and paleoenvironmental change. It has been demonstrated that present offshore export of particles in the bottom nepheloid layer occur pri...The Okinawa Trough is a natural laboratory for the study of air-sea interaction and paleoenvironmental change. It has been demonstrated that present offshore export of particles in the bottom nepheloid layer occur primarily with downwelling from the northeast winter monsoon, which is inhibited by a transverse circulation pattern in summer. This current system was very different during the Last Glacial Maximum owing to low sea level (-120 m) and exposure of a large shelf area. We collected sediment core Oki01 from the middle Okinawa Trough during 2012 using R/V Kexue No. 1 to elucidate the timing and cause of the current system transition in the East China Sea. Clay mineral, dry density, and elemental (Ti, Ca) composition of core Oki01 was analyzed. The results indicate that clay minerals derived mainly from the Huanghe (Yellow) and the Changjiang (Yangtze) Rivers during 16.0-11.6 ka, and the modem current system in the East China Sea formed beginning in the early Holocene. Therefore, mixing of East China Sea continental shelf, Changjiang River and partially Taiwan Island sediment are the major contributors. The decrease of log(Ti/Ca) and alternating provenance since the early Holocene indicate less sediment from the East China in summer because of resistance of the modern current system, i.e., a "water barrier" and upwelling. Conversely, sediment delivery persists in winter and log(Ti/Ca) indicates the winter monsoon signal since the early Holocene. Our evidence also suggests that sediment from Taiwan Island could be transported by the Kuroshio Current to the middle Okinawa Trough, where it mingles with winter monsoon- induced export of sediment from the Changjiang River and East China Sea continental shelf. Although the present research advances understanding of the evolutionary history of paleoenvironmental change in the Okinawa Trough, more sediment cores should be retrieved over wide areas to construct a larger scenario.展开更多
基金the National Basic Research Program of China under Grant No 973-2007CB411807National High Technology Development Project under Grant No 863-2006AA09Z140+1 种基金China Postdoctoral Science Foundation funded project under Grant No 2008041345the Scientific Research Starting Foundation for Doctoral of Institute of Meteorology,PLA University of Science and Technology
文摘Time series of sea surface temperature (SST), wind speed and significant wave height (SWH) from meteorological buoys of the National Data Buoy Center (NDBC) are useful for studying the interannual variability and trend of these quantities at the buoy areas. The measurements from 4 buoys (B51001, B51002, B51003 and B51004) in the Hawaii area are used to study the responses of the quantities to El Nino and Southern Oscillation (ENSO). Long-term averages of these data reflect precise seasonal and climatological characteristics of SST, wind speed and SWH around the Hawaii area. Buoy observations from B51001 suggest a significant warming trend which is, however, not very clear from the other three buoys. Compared with the variability of SST and SWH, the wind speeds from the buoy observations show an increasing trend. The impacts of EI Nifio on SST and wind waves are also shown. Sea level data observed by altimeter during October 1992 to September 2006 are analyzed to investigate the variability of sea level in the Hawaii area. The results also show an increasing trend in sea level anomaly (SLA). The low-passed SLA in the Hawaii area is consistent with the inverse phase of the low-passed SOI (Southern Oscillation Index). Compared with the low-passed SOl and PDO (Pacific Decadal Oscillation), the low-passed PNA (Pacific-North America Index) has a better correlation with the low-passed SEA in the Hawaii area.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12)the National Natural Science Foundation of China (No.40706011)the Open Foundation of Key Laboratory of Marine Science and Numerical Modeling (MASNUM)
文摘We compared nonlinear principal component analysis(NLPCA) with linear principal component analysis(LPCA) with the data of sea surface wind anomalies(SWA),surface height anomalies(SSHA),and sea surface temperature anomalies(SSTA),taken in the South China Sea(SCS) between 1993 and 2003.The SCS monthly data for SWA,SSHA and SSTA(i.e.,the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA,with only three leading modes retained.The first three modes of SWA,SSHA,and SSTA of LPCA explained 86%,71%,and 94% of the total variance in the original data,respectively.Thus,the three associated time coefficient functions(TCFs) were used as the input data for NLPCA network.The NLPCA was made based on feed-forward neural network models.Compared with classical linear PCA,the first NLPCA mode could explain more variance than linear PCA for the above data.The nonlinearity of SWA and SSHA were stronger in most areas of the SCS.The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%,and 60.24% versus 50.43%,respectively for the first LPCA mode.Conversely,the nonlinear SSTA,localized in the northern SCS and southern continental shelf region,resulted in little improvement in the explanation of the variance for the first NLPCA.
基金Supported by the National Natural Science Foundation of China(Nos.41430965,41376057)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11030302)
文摘The Okinawa Trough is a natural laboratory for the study of air-sea interaction and paleoenvironmental change. It has been demonstrated that present offshore export of particles in the bottom nepheloid layer occur primarily with downwelling from the northeast winter monsoon, which is inhibited by a transverse circulation pattern in summer. This current system was very different during the Last Glacial Maximum owing to low sea level (-120 m) and exposure of a large shelf area. We collected sediment core Oki01 from the middle Okinawa Trough during 2012 using R/V Kexue No. 1 to elucidate the timing and cause of the current system transition in the East China Sea. Clay mineral, dry density, and elemental (Ti, Ca) composition of core Oki01 was analyzed. The results indicate that clay minerals derived mainly from the Huanghe (Yellow) and the Changjiang (Yangtze) Rivers during 16.0-11.6 ka, and the modem current system in the East China Sea formed beginning in the early Holocene. Therefore, mixing of East China Sea continental shelf, Changjiang River and partially Taiwan Island sediment are the major contributors. The decrease of log(Ti/Ca) and alternating provenance since the early Holocene indicate less sediment from the East China in summer because of resistance of the modern current system, i.e., a "water barrier" and upwelling. Conversely, sediment delivery persists in winter and log(Ti/Ca) indicates the winter monsoon signal since the early Holocene. Our evidence also suggests that sediment from Taiwan Island could be transported by the Kuroshio Current to the middle Okinawa Trough, where it mingles with winter monsoon- induced export of sediment from the Changjiang River and East China Sea continental shelf. Although the present research advances understanding of the evolutionary history of paleoenvironmental change in the Okinawa Trough, more sediment cores should be retrieved over wide areas to construct a larger scenario.