Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipi...Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale.Corresponding to years of more or less precipitation in the raining season,there are sharply opposite distribution across the nation in the simultaneous periods.In addition,by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~August of the previous year),a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season.Discussions are also made of the sensitive period,its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China.In the last part of the work,relationship between the SSTA in the sensitive zone and global SSTA is analyzed.A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward.展开更多
Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadlSSTI and HadSST3). Similar to the Atlantic, SST in the China Seas ...Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadlSSTI and HadSST3). Similar to the Atlantic, SST in the China Seas has been well observed during the past 107 years. A comparison between the reconstructed (HadISSTI) and un-interpolated (HadSST3) datasets shows that the SST wanning trends from both datasets are consistent with each other in most of the China Seas. The warming trends are stronger in winter than in summer, with a maximum rate of SST increase exceeding 2.7℃ (100year)-I in the East China Sea and the Taiwan Strait during winter based on HadISSTI. However, the SST from both datasets experienced a sudden decrease after 1999 in the China Seas. The estimated trend from HadlSSTI is stronger than that fi'om HadSST3 in the East China Sea and the east of Taiwan Island, where the difference in the linear SST warming trends are as large as about 1℃ (100year)-I when using respectively HadISST1 and HadSST3 datasets. When compared to the linear winter warnling trend of the land surface air temperature (1.6℃ (100 year)-1), HadSST3 shows a more reasonable trend of less than 2.1℃( 100 year)-1 than HadISST 1 's trend of larger than 2.7℃ ( 100 year)-1 at the mouth of the Yangtze River. The restllts also indicate large uncertainties in the estimate of SST warming patterns.展开更多
Based on the observation data from China coastal marine stations,the key indicators of marine climate along China coast were explored,including sea surface t emperature(SST),sea level and sea ice.Results show that:(a)...Based on the observation data from China coastal marine stations,the key indicators of marine climate along China coast were explored,including sea surface t emperature(SST),sea level and sea ice.Results show that:(a)The SST along China coast continues rising and increased by 0.25℃/decade during 1980-2019,the warming accelerated significantly after 2011 and it has been well above normal for five consecutive years since 2015.In 2019,the average SST along China coast was 1.1℃ higher than normal(with 1981-2010 taken as a reference period),ranking the highest since 1980.Besides,the SST extremes have been explored based on four long-term marine stations for the period 1960-2019.(b)Sea level along China coast continues to rise at an accelerated rate.The mean sea level rise rate along China Coast was about 2.4 mm/yr during 1960-2019,3.4 mm/yr during 1980-2019,and 3.9 mm/yr during 1993-2019,with significant regional differences.The relatively stronger sea level rise trends were observed along the coastal waters of the Bohai Bay,the Laizhou Bay,the Yangtze River Estuary,the Pearl River Estuary,and the Hainan Island,respectively.Besides,the extreme sea levels along China coast showed an obvious upward trend from 1980 to 2019.During this period,the annual rise rate of extreme high water level along China coast was 4.4 mm/yr,and had obvious regional characteristics,with the highest rate of 9.9 mm/yr observed at Yantai of Shandong Province,(c)The annual sea ice period and sea ice cover of the Bohai Sea(BS)decreased substantially during 1963-2019 by 0.7-1.3 days/yr and 45-59%/yr,respectively,and the decrease rate of ice cover is larger in the north than that in the south.2019 was the year of light icing.展开更多
The authors’ surveys in May-June 1999 (two cruises) at six sampling stations near nuclear power plants (NPP) and marine fish culture zones in Daya Bay, Guangdong, revealed species composition, densities and body-size...The authors’ surveys in May-June 1999 (two cruises) at six sampling stations near nuclear power plants (NPP) and marine fish culture zones in Daya Bay, Guangdong, revealed species composition, densities and body-size of the sea surface microlayer (SM) zooplankton (>35 μm). Results showed that protozoans and copepod nauplii were the predominant components, accounting for 65.40% to 95.56% of total zooplankton in abundance. The size-frequency distributions showed that the frequency of micro-zooplankton (0.02-0.2 mm) reached 0.8235. The SM zooplankton community structure revealed in the present study was quite different from that revealed by investigations in the 1980s in Daya Bay. Difference of sampling method has important influence on the obtained zooplankton community structure. SM zooplankton consisted of micro- and mesozooplankton (0.2-2.0 mm), with micro-zooplankton being predominant. Some possible cause-effect relations between the zooplankton community structure and mariculture, nuclear power plants cooling systems and sampling method are discussed.展开更多
A simple approach that considers both internal decadal variability and the effect of anthropogenic forcing is developed to predict the decadal components of global sea surface temperatures (SSTs) for the three decades...A simple approach that considers both internal decadal variability and the effect of anthropogenic forcing is developed to predict the decadal components of global sea surface temperatures (SSTs) for the three decades 2011-2040. The internal decadal component is derived by harmonic wave expansion analyses based on the quasiperiodic evolution of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO), as obtained from observational SST datasets. Furthermore, the external decadal component induced by anthropogenic forcing is assessed with a second-order fit based on the ensemble of projected SSTs in the experiments with multiple coupled climate models associated with the third Coupled Model Intercomparison Project (CMIP3) under the Intergovernmental Panels on Climate Change (IPCC) Special Reports on Emissions Scenario (SRES) A1B. A validation for the years from 2002 to 2010 based on a comparison of the predicted and the observed SST and their spatial correlation, as well as the root mean square error (RMSE), suggests that the approach is reasonable overall. In addition, the predicted results over the 50°S-50°N global band, the Indian Ocean, the western Pacific Ocean, the tropical eastern Pacific Ocean, and the North and the South Atlantic Ocean are presented.展开更多
Data assimilation is a powerful tool to improve ocean forecasting by reducing uncertainties in forecast initial conditions.Recently,an ocean data assimilation system based on the ensemble optimal interpolation(EnOI) s...Data assimilation is a powerful tool to improve ocean forecasting by reducing uncertainties in forecast initial conditions.Recently,an ocean data assimilation system based on the ensemble optimal interpolation(EnOI) scheme and HYbrid Coordinate Ocean Model(HYCOM) for marginal seas around China was developed.This system can assimilate both satellite observations of sea surface temperature(SST) and along-track sea level anomaly(SLA) data.The purpose of this study was to evaluate the performance of the system.Two experiments were performed,which spanned a 3-year period from January 1,2004 to December 30,2006,with and without data assimilation.The data assimilation results were promising,with a positive impact on the modeled fields.The SST and SLA were clearly improved in terms of bias and root mean square error over the whole domain.In addition,the assimilations provided improvements in some regions to the surface field where mesoscale processes are not well simulated by the model.Comparisons with surface drifter trajectories showed that assimilated SST and SLA also better represent surface currents,with drifter trajectories fitting better to the contours of SLA field than that without assimilation.The forecasting capacity of this assimilation system was also evaluated through a case study of a birth-and-death process of an anticyclone eddy in the Northern South China Sea(NSCS),in which the anticyclone eddy was successfully hindcasted by the assimilation system.This study suggests the data assimilation system gives reasonable descriptions of the near-surface ocean state and can be applied to forecast mesoscale ocean processes in the marginal seas around China.展开更多
A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Throug...A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Through off-line tests and a simulation of a real typhoon, the authors compared the performance of the WRF-OMLM-Noh with another existing ocean mixed-layer coupled model (WRF-OMLM-Pollard). In the off-line tests with Tropical Ocean Global Atmosphere Program's Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) observational data, the results show that OMLM-Noh is better able to simulate sea surface temperature (SST) variational trends than OMLM -Pollard. Moreover, OMLM-Noh can sufficiently reproduce the diurnal cycle of SST. Regarding the typhoon case study, SST cooling due to wind-driven ocean mixing is underestimated in WRF-OMLM-Pollard, which artificially increases the intensity of the typhoon due to more simulated air-sea heat fluxes. Compared to the WRF- OMLM-Pollard, the performance of WRF-OMLM-Noh is superior in terms of both the spatial distribution and temporal variation of SST and air-sea heat fluxes.展开更多
Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate retttrn-period values of marine environmental variables in this region to ens...Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate retttrn-period values of marine environmental variables in this region to ensure the safety and success of maritime engineering and maritime exploration. In this study, we used numerical simulations to estimate extreme wave height, sea current velocity and sea-level height in westem Laizhou Bay. The results show that the sea-level rise starts at the mouth of the bay, increases toward west/southwest, and reaches its maximum in the deepest basin of the bay. The 100-year return-period values of sea level rise can reach 3.4-4.0m in the western bay. The elevation of the western part of the Qingdong Oil Field would remain above the sea sur- face during extreme low sea level, while the rest of the oil field would be 1,6-2.4m below the sea surface. The return-period value of wave height is strongly affected by water depth; in fact, its spatial distribution is similar to the isobath's. The 100-year return-period values of effective wave height can be 6m or higher in the central bay and be more than 1 m in the shallow water near shore. The 100-year return-period values of current velocity is about 1.2-1.8 ms-1 in the Qingdong Oil Field. These results provide scientific basis for ensuring construction safety and reducing construction cost,展开更多
Extensive bleaching of Montastrea annularis spp. group and several other scleractinian taxa occurred on the reefs within the Arrecifes de Cozumel National Park of Cozumel, Mexico, after the passage of Hurricane/Tropic...Extensive bleaching of Montastrea annularis spp. group and several other scleractinian taxa occurred on the reefs within the Arrecifes de Cozumel National Park of Cozumel, Mexico, after the passage of Hurricane/Tropical Storm Rina. We conducted six drift dives at five different dive sites (-13 h of scuba diving) and photographed a variety of reefs scenes at depths of 10-28 m. Bleaching was noted at depths of 10-40 m in a variety of scleractinian species, including M. annularis species group, especially M. faveolata and Siderastrea siderea. Considering that local dive guides had not observed bleaching prior to the storm and the sea surface temperature did not exceed the local bleaching threshold, it is probable that the extensive rainfall associated with Hurricane/Tropical Storm Rina lowered salinity sufficiently via subsurface freshwater springs to cause bleaching in susceptible species. This suggests the need to monitor not only subsurface sea temperature but also subsurface salinity in localities where freshwater springs occur adjacent to or within coral reefs.展开更多
The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed ...The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed for research and operational purposes. The system is based on a multivariate Ensemble Optimal Interpolation (EnOI) scheme and considers the high fre- quency variability of the model error co-variance matrix. The EnOl can assimilate sea surface temperature (SST), satellite along-track and gridded sea level anomalies (SLA), and vertical profiles of temperature (T) and salinity (S) from Argo. The first observing system experiment was carried out over the Atlantic Ocean (78°S-50°N, 100°W-20°E) with HYCOM forced with atmospheric reanalysis from 1 January to 30 June 2010. Five integra- tions were performed, including the control run without assimilation. In the other four, different observations were assimilated: SST only (A SST); Argo T-S profiles only (AArgo); along-track SLA only (A_SLA); and all data employed in the previous runs (A_All). The A_SST, A_Argo, and A_SLA runs were very effective in improv- ing the representation of the assimilated variables, but they had relatively little impact on the variables that were not assimilated. In particular, only the assimilation of S was able to reduce the deviation of S with respect to ob- servations. Overall, the A_All run produced a good analy- sis by reducing the deviation of SST, T, and S with respect to the control run by 39%, 18%, and 30%, respectively, and by increasing the correlation of SLA by 81%.展开更多
Sea level anomalies observed by altimeter during the 1993-2006 period, thermosteric sea level anomalies estimated by using subsurface temperature data produced by Ishii and SODA reanalysis data, tide gauge records and...Sea level anomalies observed by altimeter during the 1993-2006 period, thermosteric sea level anomalies estimated by using subsurface temperature data produced by Ishii and SODA reanalysis data, tide gauge records and HOAPS freshwater flux data were analyzed to investigate the long term sea level change and the water mass balance in the South China Sea, The altime- ter-observed sea level showed a rising rate of (3.5±0.9)mmyr-1 during the period 1993-2006, but this figure was considered to have been highly distorted by the relatively short time interval and the large inter-decadal variability, which apparently exists in both the thermosteric sea level and the observed sea level. Long term thermosteric sea level from 1945 to 2004 gave a rising rate of 0.15±0.06 mmyr-1. Tide gauge'data revealed this discrepancy and the regional distributions of the sea-level trends. Both the 'real' and the ther- mosteric sea level showed a good correspondence to ENSO: decreasing during El Nino years and increasing during La Nina years. Amplitude and phase differences between the 'real' sea level and the thermosteic sea level were substantially revealed on both sea- sonal and interannual time scales. As one of the possible factors, the freshwater flux might play an important role in balancing the water mass.展开更多
We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(S...We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.展开更多
A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the K...A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model.The present model parameters include the integrated kinetic rate of deposition(k d)and the integrated kinetic rate of removal(k r),which have clear physical signi ficance.A seawater-fouling monitoring device was established to validate the model.The experimental data were well fitted to the model,and the parameters were obtained in different conditions.SEM and EDX analyses were performed after the experiments,and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hydroxide.The effects of surface temperature,flow velocity and surface free energy were assessed by the model and the experimental data.The results indicate that the seawater fouling becomes aggravated as the surface temperature increased in a certain range,and the seawater fouling resistance reduced as the flow velocity of seawater increased.Furthermore,the effect of the surface free energy of metals was analyzed,showing that the lower surface free energy mitigates the seawater fouling accumulation.展开更多
The profile method is the principal method first to be chosen to measure the apparent optical parameters of waters. This paper first introduces the profile method briefly, then modifies Ⅱthe applied algorithm in the ...The profile method is the principal method first to be chosen to measure the apparent optical parameters of waters. This paper first introduces the profile method briefly, then modifies Ⅱthe applied algorithm in the light of the properties of the class- waters and lastly, analyses the effect of application.展开更多
This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100 200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic...This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100 200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic analysis and Empirical Orthogonal Function (EOF) methods.Significant cooling trends in the SOT in the tropical western Pacific were found over this 60-year period.The first EOF of the SOT in tropical Pacific displays an ENSO-like zonal dipole pattern on decadal time scale,and we considered this pattern in subsurface ocean temperature the tropical Pacific decadal oscillation (TPDO).Our analysis suggests that TPDO is closely correlated with the Pacific decadal oscillation (PDO) in the surface sea temperature (SST).The correlation coefficient between the indices of TPDO and PDO is +0.81 and reaches a maximum of +0.84 when TPDO lags behind PDO by 2 months.Therefore,a change of TPDO is likely related to the variation of PDO.The long-term change in TPDO best explains decadal warming in the tropical eastern Pacific SST and implies potential impact on the weakening of East Asian summer monsoons after the late 1970s.展开更多
The latest version of sea spray flux parameterization scheme developed by Andreas is coupled with the PSU/NCAR model MM5 in this paper. A western Pacific tropical cyclone named Nabi in 2005 is simulated using this cou...The latest version of sea spray flux parameterization scheme developed by Andreas is coupled with the PSU/NCAR model MM5 in this paper. A western Pacific tropical cyclone named Nabi in 2005 is simulated using this coupled air-sea spray modeling system to study the impacts of sea spray evaporation on the evolution of tropical cyclones. The results demonstrate that sea spray can lead to a significant increase of heat fluxes in the air-sea interface, especially the latent heat flux, the maximum of which can increase by up to about 35% - 80% The latent heat flux seems to be more important than the sensible heat flux for the evolution of tropical cyclones. Regardless of whether sea spray fluxes have been considered, the model can always simulate the track of Nabi well, which seems to indicate that sea spray has little impact on the movement of tropical cyclones. However, with sea spray fluxes taken into account in the model, the intensity of a simulated tropical cyclone can have significant increase. Due to the enhancement of water vapor and heat from the sea surface to the air caused by sea spray, the warm core structure is better-defined, the minimum sea level pressure decreases and the vertical speed is stronger around the eye in the experiments, which is propitious to the development and evolution of tropical cyclones.展开更多
Surface seawater was collected for ^(226)Ra measurement in the North Pacific Subtropical Gyre from July to October, 1999 and October to December, 2003. Combined with the historical data reported for this sea area, a ...Surface seawater was collected for ^(226)Ra measurement in the North Pacific Subtropical Gyre from July to October, 1999 and October to December, 2003. Combined with the historical data reported for this sea area, a declined trend of surface ^(226)Ra concentrations was observed since 1960s, indicating the ecosystem shift in response to global warming. On one side, the enhanced stratification of the upper water column resulting from global warming reduced the ^(226)Ra input from the depth, on the other, the temporal increase of biological production resulting from the climate-related ecosystem structure change strengthened the ^(226)Ra removal from the surface ocean. Both the physical and biological processes resulted in the decrease of surface ^(226)Ra concentrations in the North Pacific Subtropical Gyre. The temporal trend of surface ^(226)Ra concentrations was consistent with the trends of chlorophyll a, silicate, phosphate and primary production previously reported. This study provided ^(226)Ra evidence for the ecosystem shift under global change.展开更多
We applied a season-reliant empirical orthogonal function(S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO_2 flux over the western North ...We applied a season-reliant empirical orthogonal function(S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO_2 flux over the western North Pacific(WNP)(0°–35°N, 110°E–150°E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Ni-Southern Oscillation(ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO_2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO_2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone(WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO_2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO_2 uptake by enhancing surface seawater CO_2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO_2 flux anomalies in the spring.展开更多
To be used as proxies of seawater surface temperature (SST), the 61Soc values and Sr/Ca and Mg/Ca ratios of scleractinian coral skeletons must be verified by coral culture experiments in the laboratory. This paper d...To be used as proxies of seawater surface temperature (SST), the 61Soc values and Sr/Ca and Mg/Ca ratios of scleractinian coral skeletons must be verified by coral culture experiments in the laboratory. This paper describes a coral culture experiment that was conducted at several seawater temperatures T (21-28℃) using a tandem aquarium system and the new method for depositing coral skeletons grown under controlled conditions. The δ180c values and the St/Ca and Mg/Ca ratios of the cultured coral were measured. We concluded that the δ18Oc values and Sr/Ca and Mg/Ca ratios of the cultured coral are clearly corre- lated with T. The linear regression curve is δ18Oc(‰)=-0.1427×T(℃)-0.1495 (n=18, r=0.955, p〈0.0001), and the slope of -0.1427‰/°d℃ is at the low end of the range of published values (-0.13-0.29‰/°d℃). The Sr/Ca ratio decreases with increas- ing T, whereas the Mg/Ca ratio increases with increasing T, indicating a negative correlation between Sr/Ca and Mg/Ca. Their linear regression curves are Sr/Ca(mmol/mol)=-O.O4156×T+lO.59 (n=15, r=-0.789, p〈0.005) and Mg/Ca (mmol/mol)= 0.04974×T+2.339 (n=17, r=-0.457, p〈0.05), respectively, which demonstrate that when Mg/Ca and Sr/Ca are increased by one unit, T increases by 5.19℃and decreases by 15.62℃, respectively. These variations are significantly lower than published values.展开更多
文摘Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale.Corresponding to years of more or less precipitation in the raining season,there are sharply opposite distribution across the nation in the simultaneous periods.In addition,by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~August of the previous year),a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season.Discussions are also made of the sensitive period,its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China.In the last part of the work,relationship between the SSTA in the sensitive zone and global SSTA is analyzed.A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward.
基金supported by the National Basic Research Program of China(2012-CB955602)National Key Program for Developing Basic Science(2010CB428904)Natural Science Foundation of China(40830106,40921004 and 41176006)
文摘Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadlSSTI and HadSST3). Similar to the Atlantic, SST in the China Seas has been well observed during the past 107 years. A comparison between the reconstructed (HadISSTI) and un-interpolated (HadSST3) datasets shows that the SST wanning trends from both datasets are consistent with each other in most of the China Seas. The warming trends are stronger in winter than in summer, with a maximum rate of SST increase exceeding 2.7℃ (100year)-I in the East China Sea and the Taiwan Strait during winter based on HadISSTI. However, the SST from both datasets experienced a sudden decrease after 1999 in the China Seas. The estimated trend from HadlSSTI is stronger than that fi'om HadSST3 in the East China Sea and the east of Taiwan Island, where the difference in the linear SST warming trends are as large as about 1℃ (100year)-I when using respectively HadISST1 and HadSST3 datasets. When compared to the linear winter warnling trend of the land surface air temperature (1.6℃ (100 year)-1), HadSST3 shows a more reasonable trend of less than 2.1℃( 100 year)-1 than HadISST 1 's trend of larger than 2.7℃ ( 100 year)-1 at the mouth of the Yangtze River. The restllts also indicate large uncertainties in the estimate of SST warming patterns.
基金supported by the National Key Research and Development Program of China(NO.2016YFC1402610).
文摘Based on the observation data from China coastal marine stations,the key indicators of marine climate along China coast were explored,including sea surface t emperature(SST),sea level and sea ice.Results show that:(a)The SST along China coast continues rising and increased by 0.25℃/decade during 1980-2019,the warming accelerated significantly after 2011 and it has been well above normal for five consecutive years since 2015.In 2019,the average SST along China coast was 1.1℃ higher than normal(with 1981-2010 taken as a reference period),ranking the highest since 1980.Besides,the SST extremes have been explored based on four long-term marine stations for the period 1960-2019.(b)Sea level along China coast continues to rise at an accelerated rate.The mean sea level rise rate along China Coast was about 2.4 mm/yr during 1960-2019,3.4 mm/yr during 1980-2019,and 3.9 mm/yr during 1993-2019,with significant regional differences.The relatively stronger sea level rise trends were observed along the coastal waters of the Bohai Bay,the Laizhou Bay,the Yangtze River Estuary,the Pearl River Estuary,and the Hainan Island,respectively.Besides,the extreme sea levels along China coast showed an obvious upward trend from 1980 to 2019.During this period,the annual rise rate of extreme high water level along China coast was 4.4 mm/yr,and had obvious regional characteristics,with the highest rate of 9.9 mm/yr observed at Yantai of Shandong Province,(c)The annual sea ice period and sea ice cover of the Bohai Sea(BS)decreased substantially during 1963-2019 by 0.7-1.3 days/yr and 45-59%/yr,respectively,and the decrease rate of ice cover is larger in the north than that in the south.2019 was the year of light icing.
文摘The authors’ surveys in May-June 1999 (two cruises) at six sampling stations near nuclear power plants (NPP) and marine fish culture zones in Daya Bay, Guangdong, revealed species composition, densities and body-size of the sea surface microlayer (SM) zooplankton (>35 μm). Results showed that protozoans and copepod nauplii were the predominant components, accounting for 65.40% to 95.56% of total zooplankton in abundance. The size-frequency distributions showed that the frequency of micro-zooplankton (0.02-0.2 mm) reached 0.8235. The SM zooplankton community structure revealed in the present study was quite different from that revealed by investigations in the 1980s in Daya Bay. Difference of sampling method has important influence on the obtained zooplankton community structure. SM zooplankton consisted of micro- and mesozooplankton (0.2-2.0 mm), with micro-zooplankton being predominant. Some possible cause-effect relations between the zooplankton community structure and mariculture, nuclear power plants cooling systems and sampling method are discussed.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA05090406 and XDA05110203)the special projects of the China Meteorological Administration(Grant No.GYHY201006022)contribution to the DecCen and Blue Arc projects funded by the Research Council of Norway and to the Centre for Climate Dynamics at the Bjerknes Centre
文摘A simple approach that considers both internal decadal variability and the effect of anthropogenic forcing is developed to predict the decadal components of global sea surface temperatures (SSTs) for the three decades 2011-2040. The internal decadal component is derived by harmonic wave expansion analyses based on the quasiperiodic evolution of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO), as obtained from observational SST datasets. Furthermore, the external decadal component induced by anthropogenic forcing is assessed with a second-order fit based on the ensemble of projected SSTs in the experiments with multiple coupled climate models associated with the third Coupled Model Intercomparison Project (CMIP3) under the Intergovernmental Panels on Climate Change (IPCC) Special Reports on Emissions Scenario (SRES) A1B. A validation for the years from 2002 to 2010 based on a comparison of the predicted and the observed SST and their spatial correlation, as well as the root mean square error (RMSE), suggests that the approach is reasonable overall. In addition, the predicted results over the 50°S-50°N global band, the Indian Ocean, the western Pacific Ocean, the tropical eastern Pacific Ocean, and the North and the South Atlantic Ocean are presented.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX1-YW-12-03)the National Basic Research Program of China (973 Program) (No. 2006CB403600)+1 种基金China COPES Project (No.GYHY-200706005)the National Natural Science Foundation of China (No. 40821092)
文摘Data assimilation is a powerful tool to improve ocean forecasting by reducing uncertainties in forecast initial conditions.Recently,an ocean data assimilation system based on the ensemble optimal interpolation(EnOI) scheme and HYbrid Coordinate Ocean Model(HYCOM) for marginal seas around China was developed.This system can assimilate both satellite observations of sea surface temperature(SST) and along-track sea level anomaly(SLA) data.The purpose of this study was to evaluate the performance of the system.Two experiments were performed,which spanned a 3-year period from January 1,2004 to December 30,2006,with and without data assimilation.The data assimilation results were promising,with a positive impact on the modeled fields.The SST and SLA were clearly improved in terms of bias and root mean square error over the whole domain.In addition,the assimilations provided improvements in some regions to the surface field where mesoscale processes are not well simulated by the model.Comparisons with surface drifter trajectories showed that assimilated SST and SLA also better represent surface currents,with drifter trajectories fitting better to the contours of SLA field than that without assimilation.The forecasting capacity of this assimilation system was also evaluated through a case study of a birth-and-death process of an anticyclone eddy in the Northern South China Sea(NSCS),in which the anticyclone eddy was successfully hindcasted by the assimilation system.This study suggests the data assimilation system gives reasonable descriptions of the near-surface ocean state and can be applied to forecast mesoscale ocean processes in the marginal seas around China.
基金supported by the "Strategic Priority Research Program-Climate Change: Carbon Budget andRelated Issue" of the Chinese Academy of Sciences (Grant No.XDA-05110303)the National Basic Research Program of China(Grant Nos. 2010CB951703 and 2009CB421403)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos. KZCX2-YW-Q11-01 and KZCX2-YW-BR-14)
文摘A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Through off-line tests and a simulation of a real typhoon, the authors compared the performance of the WRF-OMLM-Noh with another existing ocean mixed-layer coupled model (WRF-OMLM-Pollard). In the off-line tests with Tropical Ocean Global Atmosphere Program's Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) observational data, the results show that OMLM-Noh is better able to simulate sea surface temperature (SST) variational trends than OMLM -Pollard. Moreover, OMLM-Noh can sufficiently reproduce the diurnal cycle of SST. Regarding the typhoon case study, SST cooling due to wind-driven ocean mixing is underestimated in WRF-OMLM-Pollard, which artificially increases the intensity of the typhoon due to more simulated air-sea heat fluxes. Compared to the WRF- OMLM-Pollard, the performance of WRF-OMLM-Noh is superior in terms of both the spatial distribution and temporal variation of SST and air-sea heat fluxes.
基金supported by the National Natural Science Foundation for the Project ‘Formation and development of the muddy deposition in the central south Yellow Sea, and its relation with climate and environmental change (41030856)’the Shandong Natural Science Foun-dation for the Project ‘Seasonal variation and its mechanism of suspended sediment distribution along the Shandong Peninsula (BS2012HZ022)’+2 种基金the project of ‘Ocean-Land interaction and coastal geological hazard (GZH201100203)’the NSFC project ‘Mechanism on strong wind’s effect on submarine pipeline’s stability’ (41006024)the Taishan Scholar Project
文摘Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate retttrn-period values of marine environmental variables in this region to ensure the safety and success of maritime engineering and maritime exploration. In this study, we used numerical simulations to estimate extreme wave height, sea current velocity and sea-level height in westem Laizhou Bay. The results show that the sea-level rise starts at the mouth of the bay, increases toward west/southwest, and reaches its maximum in the deepest basin of the bay. The 100-year return-period values of sea level rise can reach 3.4-4.0m in the western bay. The elevation of the western part of the Qingdong Oil Field would remain above the sea sur- face during extreme low sea level, while the rest of the oil field would be 1,6-2.4m below the sea surface. The return-period value of wave height is strongly affected by water depth; in fact, its spatial distribution is similar to the isobath's. The 100-year return-period values of effective wave height can be 6m or higher in the central bay and be more than 1 m in the shallow water near shore. The 100-year return-period values of current velocity is about 1.2-1.8 ms-1 in the Qingdong Oil Field. These results provide scientific basis for ensuring construction safety and reducing construction cost,
文摘Extensive bleaching of Montastrea annularis spp. group and several other scleractinian taxa occurred on the reefs within the Arrecifes de Cozumel National Park of Cozumel, Mexico, after the passage of Hurricane/Tropical Storm Rina. We conducted six drift dives at five different dive sites (-13 h of scuba diving) and photographed a variety of reefs scenes at depths of 10-28 m. Bleaching was noted at depths of 10-40 m in a variety of scleractinian species, including M. annularis species group, especially M. faveolata and Siderastrea siderea. Considering that local dive guides had not observed bleaching prior to the storm and the sea surface temperature did not exceed the local bleaching threshold, it is probable that the extensive rainfall associated with Hurricane/Tropical Storm Rina lowered salinity sufficiently via subsurface freshwater springs to cause bleaching in susceptible species. This suggests the need to monitor not only subsurface sea temperature but also subsurface salinity in localities where freshwater springs occur adjacent to or within coral reefs.
基金financially supported by the Brazilian State oil company Petróleo Brasileiro S. A. (Petrobras) and Agência Nacional de Petróleo (ANP), Gás Natural e Biocombustíveis, Brazil, via the Oceanographic Modeling and Observation Network (REMO)support of the Coordenao de Aperfeioamento de Pessoal de Nível Superior (CAPES), Ministry of Education of Brazil (Proc. BEX 3957/13-6)
文摘The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed for research and operational purposes. The system is based on a multivariate Ensemble Optimal Interpolation (EnOI) scheme and considers the high fre- quency variability of the model error co-variance matrix. The EnOl can assimilate sea surface temperature (SST), satellite along-track and gridded sea level anomalies (SLA), and vertical profiles of temperature (T) and salinity (S) from Argo. The first observing system experiment was carried out over the Atlantic Ocean (78°S-50°N, 100°W-20°E) with HYCOM forced with atmospheric reanalysis from 1 January to 30 June 2010. Five integra- tions were performed, including the control run without assimilation. In the other four, different observations were assimilated: SST only (A SST); Argo T-S profiles only (AArgo); along-track SLA only (A_SLA); and all data employed in the previous runs (A_All). The A_SST, A_Argo, and A_SLA runs were very effective in improv- ing the representation of the assimilated variables, but they had relatively little impact on the variables that were not assimilated. In particular, only the assimilation of S was able to reduce the deviation of S with respect to ob- servations. Overall, the A_All run produced a good analy- sis by reducing the deviation of SST, T, and S with respect to the control run by 39%, 18%, and 30%, respectively, and by increasing the correlation of SLA by 81%.
基金supported by the National Basic Research Program of China through Grant No. 973-2007CB- 411807
文摘Sea level anomalies observed by altimeter during the 1993-2006 period, thermosteric sea level anomalies estimated by using subsurface temperature data produced by Ishii and SODA reanalysis data, tide gauge records and HOAPS freshwater flux data were analyzed to investigate the long term sea level change and the water mass balance in the South China Sea, The altime- ter-observed sea level showed a rising rate of (3.5±0.9)mmyr-1 during the period 1993-2006, but this figure was considered to have been highly distorted by the relatively short time interval and the large inter-decadal variability, which apparently exists in both the thermosteric sea level and the observed sea level. Long term thermosteric sea level from 1945 to 2004 gave a rising rate of 0.15±0.06 mmyr-1. Tide gauge'data revealed this discrepancy and the regional distributions of the sea-level trends. Both the 'real' and the ther- mosteric sea level showed a good correspondence to ENSO: decreasing during El Nino years and increasing during La Nina years. Amplitude and phase differences between the 'real' sea level and the thermosteic sea level were substantially revealed on both sea- sonal and interannual time scales. As one of the possible factors, the freshwater flux might play an important role in balancing the water mass.
基金supported by Innovation and Research Foundation of Ocean University of China(No.201261009)the National Natural Science Foundation of China(Nos.40930844 and 10735030)the National Basic Research Program of China(the 973 Program)under grant No.2005CB422 301
文摘We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.
基金Supported by the Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50502)the Construction of Shanghai Science and Technology Commission(13DZ2260900)
文摘A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model.The present model parameters include the integrated kinetic rate of deposition(k d)and the integrated kinetic rate of removal(k r),which have clear physical signi ficance.A seawater-fouling monitoring device was established to validate the model.The experimental data were well fitted to the model,and the parameters were obtained in different conditions.SEM and EDX analyses were performed after the experiments,and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hydroxide.The effects of surface temperature,flow velocity and surface free energy were assessed by the model and the experimental data.The results indicate that the seawater fouling becomes aggravated as the surface temperature increased in a certain range,and the seawater fouling resistance reduced as the flow velocity of seawater increased.Furthermore,the effect of the surface free energy of metals was analyzed,showing that the lower surface free energy mitigates the seawater fouling accumulation.
文摘The profile method is the principal method first to be chosen to measure the apparent optical parameters of waters. This paper first introduces the profile method briefly, then modifies Ⅱthe applied algorithm in the light of the properties of the class- waters and lastly, analyses the effect of application.
基金The National Natural Science Foundation ofChina (Grant Nos. 90711003 and 40921003)Chinese Coordinated Observation and Prediction of climate System (ChineseCOPES) program (Grant No. GYHY200706005) jointly supportedthis study
文摘This study utilizes a new monthly-assimilated sea temperature and analyzes trend and decadal oscillations in tropical Pacific 100 200 m subsurface ocean temperature (SOT) from 1945 to 2005 on the basis of the harmonic analysis and Empirical Orthogonal Function (EOF) methods.Significant cooling trends in the SOT in the tropical western Pacific were found over this 60-year period.The first EOF of the SOT in tropical Pacific displays an ENSO-like zonal dipole pattern on decadal time scale,and we considered this pattern in subsurface ocean temperature the tropical Pacific decadal oscillation (TPDO).Our analysis suggests that TPDO is closely correlated with the Pacific decadal oscillation (PDO) in the surface sea temperature (SST).The correlation coefficient between the indices of TPDO and PDO is +0.81 and reaches a maximum of +0.84 when TPDO lags behind PDO by 2 months.Therefore,a change of TPDO is likely related to the variation of PDO.The long-term change in TPDO best explains decadal warming in the tropical eastern Pacific SST and implies potential impact on the weakening of East Asian summer monsoons after the late 1970s.
基金Key Program of National Natural Science Foundation of China (40830235, 40333025)State Key Development Program of Basic Research (973 Program) of China (2004CB418301)
文摘The latest version of sea spray flux parameterization scheme developed by Andreas is coupled with the PSU/NCAR model MM5 in this paper. A western Pacific tropical cyclone named Nabi in 2005 is simulated using this coupled air-sea spray modeling system to study the impacts of sea spray evaporation on the evolution of tropical cyclones. The results demonstrate that sea spray can lead to a significant increase of heat fluxes in the air-sea interface, especially the latent heat flux, the maximum of which can increase by up to about 35% - 80% The latent heat flux seems to be more important than the sensible heat flux for the evolution of tropical cyclones. Regardless of whether sea spray fluxes have been considered, the model can always simulate the track of Nabi well, which seems to indicate that sea spray has little impact on the movement of tropical cyclones. However, with sea spray fluxes taken into account in the model, the intensity of a simulated tropical cyclone can have significant increase. Due to the enhancement of water vapor and heat from the sea surface to the air caused by sea spray, the warm core structure is better-defined, the minimum sea level pressure decreases and the vertical speed is stronger around the eye in the experiments, which is propitious to the development and evolution of tropical cyclones.
基金Supported by the National Natural Science Foundation of China (Grant No. 90411016)the National Key Basic Research Special Foundation Program of China (Grant No. 2005CB422305)China Ocean Mineral Resources R& D Association Foundation (Grant Nos. DY105-02-04 and DY105-02-01)
文摘Surface seawater was collected for ^(226)Ra measurement in the North Pacific Subtropical Gyre from July to October, 1999 and October to December, 2003. Combined with the historical data reported for this sea area, a declined trend of surface ^(226)Ra concentrations was observed since 1960s, indicating the ecosystem shift in response to global warming. On one side, the enhanced stratification of the upper water column resulting from global warming reduced the ^(226)Ra input from the depth, on the other, the temporal increase of biological production resulting from the climate-related ecosystem structure change strengthened the ^(226)Ra removal from the surface ocean. Both the physical and biological processes resulted in the decrease of surface ^(226)Ra concentrations in the North Pacific Subtropical Gyre. The temporal trend of surface ^(226)Ra concentrations was consistent with the trends of chlorophyll a, silicate, phosphate and primary production previously reported. This study provided ^(226)Ra evidence for the ecosystem shift under global change.
基金supported by the National Natural Science Foundation of China(Grant Nos.41330423,41420104006)Jiangsu Collaborative Innovation Center for Climate Change
文摘We applied a season-reliant empirical orthogonal function(S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO_2 flux over the western North Pacific(WNP)(0°–35°N, 110°E–150°E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Ni-Southern Oscillation(ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO_2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO_2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone(WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO_2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO_2 uptake by enhancing surface seawater CO_2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO_2 flux anomalies in the spring.
基金supported by National Natural Science Foundation of China (Grant Nos. 40976074 and 41173019)State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS (Grant. No SKLLQG1126)
文摘To be used as proxies of seawater surface temperature (SST), the 61Soc values and Sr/Ca and Mg/Ca ratios of scleractinian coral skeletons must be verified by coral culture experiments in the laboratory. This paper describes a coral culture experiment that was conducted at several seawater temperatures T (21-28℃) using a tandem aquarium system and the new method for depositing coral skeletons grown under controlled conditions. The δ180c values and the St/Ca and Mg/Ca ratios of the cultured coral were measured. We concluded that the δ18Oc values and Sr/Ca and Mg/Ca ratios of the cultured coral are clearly corre- lated with T. The linear regression curve is δ18Oc(‰)=-0.1427×T(℃)-0.1495 (n=18, r=0.955, p〈0.0001), and the slope of -0.1427‰/°d℃ is at the low end of the range of published values (-0.13-0.29‰/°d℃). The Sr/Ca ratio decreases with increas- ing T, whereas the Mg/Ca ratio increases with increasing T, indicating a negative correlation between Sr/Ca and Mg/Ca. Their linear regression curves are Sr/Ca(mmol/mol)=-O.O4156×T+lO.59 (n=15, r=-0.789, p〈0.005) and Mg/Ca (mmol/mol)= 0.04974×T+2.339 (n=17, r=-0.457, p〈0.05), respectively, which demonstrate that when Mg/Ca and Sr/Ca are increased by one unit, T increases by 5.19℃and decreases by 15.62℃, respectively. These variations are significantly lower than published values.