We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(S...We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.展开更多
The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole ind...The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole index of March~May, in the eastern and western parts of the ocean correlates well with the precipitation during the June~August raining season in China. As shown in analysis of 500-hPa Northern Hemisphere geopotential height height by NCEP for 1958~1995, the Indian Ocean dipole index (IODI) is closely related with geopotential height anomalies in the middle- and higher- latitudes in the Eurasian region. As a negative phase year of IODI corresponds to significant Pacific-Japan (P J) wavetrain, it is highly likely that the SST for the dipole may affect the precipitation in China through the wavetrain. Additionally, correlation analysis of links between SST dipole index of the Indian Ocean region and air temperature in China also shows good correlation between the former and wintertime temperature in southern China.展开更多
Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipi...Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale.Corresponding to years of more or less precipitation in the raining season,there are sharply opposite distribution across the nation in the simultaneous periods.In addition,by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~August of the previous year),a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season.Discussions are also made of the sensitive period,its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China.In the last part of the work,relationship between the SSTA in the sensitive zone and global SSTA is analyzed.A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward.展开更多
The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote...The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.展开更多
Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,includ...Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.展开更多
Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential heigh...Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential height field, outgoing longwave radiation (OLR) field, sea surface temperature (SST) and fourteen indexes of general circulation depicting atmosphere activity at high, middle and low latitutes. Being multiple tools of information, a number of conceptual models are formulated that are useful for prediction of the magnitude of monthly precipitation (drought, flood and normal conditionss).展开更多
There are numerous lakes on the Tibetan Plateau(TP),but the role of lake temperature in precipitation over the TP remains unclear.Here the Weather Research and Forecasting(WRF) model was used to detect the impact of l...There are numerous lakes on the Tibetan Plateau(TP),but the role of lake temperature in precipitation over the TP remains unclear.Here the Weather Research and Forecasting(WRF) model was used to detect the impact of lakes on summer rainfall.Three test cases were used to evaluate the effect of lakes surface temperature(LSTs) on precipitation variability.The three cases used different methods to determine initial LSTs,including using sea surface temperature data(SST),the WRF inland water module(avg_tsfc),and a lake model.Results show that when precipitation was stimulated over the TP,LSTs cannot be initialized using SST,which led to large discrepancies of precipitation.Compared with the simulations,the simulated precipitation were improved obviously with LSTs using avg_tsfc,indicating that LSTs have an considerable influence on determining precipitation over the TP.Due to a lack of observational data,the lake scheme does not improve on rainfall simulation,but does effectively simulate precipitation pattern over lakes,such as rainfall over the lakes was dominated by convection during the nighttime.Though the simulated precipitation using SST to initialize LSTs caused largediscrepancies,it suggested that precipitation increase especially convective precipitation with increase in LSTs,which confirmed that the moisture from lakes cannot be neglected over the TP.Generally,it was necessary to monitor the LSTs for accurate weather and climate prediction over the TP.展开更多
Sequence stratigraphic studies consider relative change in sea level(as regulated by eustasy,local tectonics and sediment supply)as the main builder of the stratigraphic record.Eustasy has generally been considered as...Sequence stratigraphic studies consider relative change in sea level(as regulated by eustasy,local tectonics and sediment supply)as the main builder of the stratigraphic record.Eustasy has generally been considered as a consequence of the growth and decay of continental ice sheets that would explain large,rapid changes in sea level,even during periods of relative global climatic warmth.However,such a mechanism has become increasingly difficult to envision during times of extreme global warmth such as the Turonian,when the equator-to-pole temperature gradient was very low and the presence of polar ice seems improbable.This paper investigates the timing and extent of sea level falls during the late Cenomanian through Turonian,especially the largest of those events,sequence boundary KTu4,which occurred during the middle to late Turonian peak of the Cretaceous hot greenhouse climate.We conclude that the amplitude of the widespread third-order sea level fall in the middle Turonian that is centered at^91.8 Ma varies at different locations depending on the influence of dynamic topography on local tectonics and regional climatic conditions.Ice volume variations seem unlikely as a mechanism for controlling sea level at this time.However,this causal factor cannot be ruled out completely since Antarctic highlands(if they existed in the Late Cretaceous)could sequester enough water as ice to cause eustatic falls.To ascertain this requires detailed tomographic imaging of Antarctica,followed by geodynamic modeling,to determine whether high plateaus could have existed to accumulate ephemeral ice sheets.Other mechanisms for sea level change,such as transference between ground water(a small amplitude shorter time scale effect)and the ocean and entrainment and release of water from the mantle to the oceanic reservoir(a potentially large amplitude and longer time scale process),are intriguing and need to be explored further to prove their efficacy at third-order time scales.展开更多
基金supported by Innovation and Research Foundation of Ocean University of China(No.201261009)the National Natural Science Foundation of China(Nos.40930844 and 10735030)the National Basic Research Program of China(the 973 Program)under grant No.2005CB422 301
文摘We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.
基金Research on the Mechanism and Prediction of Major Climatic Calamities in China a national key program for developing basic science (G199804090303) Science Foundation of Yunnan (97D022G)
文摘The work is a general survey using SSTA data of the Indian Ocean and of precipitation at 160Chinese weather stations over 1951~1997 (47 years). It reveals that the dipole oscillation of SST, especially the dipole index of March~May, in the eastern and western parts of the ocean correlates well with the precipitation during the June~August raining season in China. As shown in analysis of 500-hPa Northern Hemisphere geopotential height height by NCEP for 1958~1995, the Indian Ocean dipole index (IODI) is closely related with geopotential height anomalies in the middle- and higher- latitudes in the Eurasian region. As a negative phase year of IODI corresponds to significant Pacific-Japan (P J) wavetrain, it is highly likely that the SST for the dipole may affect the precipitation in China through the wavetrain. Additionally, correlation analysis of links between SST dipole index of the Indian Ocean region and air temperature in China also shows good correlation between the former and wintertime temperature in southern China.
文摘Precipitation anomalies in the first raining season of southern China were analyzed,with the suggestion that there are obvious interannual variation of peak values.In the raining season,the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale.Corresponding to years of more or less precipitation in the raining season,there are sharply opposite distribution across the nation in the simultaneous periods.In addition,by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~August of the previous year),a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season.Discussions are also made of the sensitive period,its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China.In the last part of the work,relationship between the SSTA in the sensitive zone and global SSTA is analyzed.A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)
文摘The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.
基金supported by the National Basic Research Program of China under Grants 2010CB950304 and 2009CB421406the Special Fund for the public welfare indus-try (Meteorology) under Grant GYHY200906018+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant KZCX2-YW-QN202the Chinese Academy of Sciences under Grants KZCX2-YW-Q1-02 and KZCX2-YW-Q11-00
文摘Using the year-to-year increment approach,this study investigated the relationship of selected climatic elements with the increment time series of the summer rainfall between successive years in Northeast China,including the soil moisture content,sea surface temperature,500 hPa geopotential height,and sea level pressure in the preceding spring for the period 1981-2008.Two spring predictors were used to construct the seasonal prediction model:the area mean soil moisture content in Northwest Eurasia and the 500 hPa geopotential height over Northeast China.Both the cross-validation and comparison with previous studies showed that the above two predictors have good predicting ability for the summer rainfall in Northeast China.
基金Short-term Climate Prediction Study for Guangdong Province a key project of Guangdong Science and Technology Committee in the national 9th five-year economic development plan Research on Long-term Tendency Prediction System for Floods/Drought and Typh
文摘Reanalysis data from NCEP/NCAR are used to systematically study preceding signals of monthly precipitation anomalies in the early raining season of Guangdong province, from the viewpoints of 500-hPa geopotential height field, outgoing longwave radiation (OLR) field, sea surface temperature (SST) and fourteen indexes of general circulation depicting atmosphere activity at high, middle and low latitutes. Being multiple tools of information, a number of conceptual models are formulated that are useful for prediction of the magnitude of monthly precipitation (drought, flood and normal conditionss).
基金The National Natural Science Foundation of China(Grant Nos.41401226 and 41190080)the China Postdoctoral Science Foundation(Grant No.2015M570865) joint support this work
文摘There are numerous lakes on the Tibetan Plateau(TP),but the role of lake temperature in precipitation over the TP remains unclear.Here the Weather Research and Forecasting(WRF) model was used to detect the impact of lakes on summer rainfall.Three test cases were used to evaluate the effect of lakes surface temperature(LSTs) on precipitation variability.The three cases used different methods to determine initial LSTs,including using sea surface temperature data(SST),the WRF inland water module(avg_tsfc),and a lake model.Results show that when precipitation was stimulated over the TP,LSTs cannot be initialized using SST,which led to large discrepancies of precipitation.Compared with the simulations,the simulated precipitation were improved obviously with LSTs using avg_tsfc,indicating that LSTs have an considerable influence on determining precipitation over the TP.Due to a lack of observational data,the lake scheme does not improve on rainfall simulation,but does effectively simulate precipitation pattern over lakes,such as rainfall over the lakes was dominated by convection during the nighttime.Though the simulated precipitation using SST to initialize LSTs caused largediscrepancies,it suggested that precipitation increase especially convective precipitation with increase in LSTs,which confirmed that the moisture from lakes cannot be neglected over the TP.Generally,it was necessary to monitor the LSTs for accurate weather and climate prediction over the TP.
基金a contribution to IGCP Project 609 "Climate-environmental deteriorations during greenhouse phases:Causes and consequences of short-term Cretaceous sea-level changes "
文摘Sequence stratigraphic studies consider relative change in sea level(as regulated by eustasy,local tectonics and sediment supply)as the main builder of the stratigraphic record.Eustasy has generally been considered as a consequence of the growth and decay of continental ice sheets that would explain large,rapid changes in sea level,even during periods of relative global climatic warmth.However,such a mechanism has become increasingly difficult to envision during times of extreme global warmth such as the Turonian,when the equator-to-pole temperature gradient was very low and the presence of polar ice seems improbable.This paper investigates the timing and extent of sea level falls during the late Cenomanian through Turonian,especially the largest of those events,sequence boundary KTu4,which occurred during the middle to late Turonian peak of the Cretaceous hot greenhouse climate.We conclude that the amplitude of the widespread third-order sea level fall in the middle Turonian that is centered at^91.8 Ma varies at different locations depending on the influence of dynamic topography on local tectonics and regional climatic conditions.Ice volume variations seem unlikely as a mechanism for controlling sea level at this time.However,this causal factor cannot be ruled out completely since Antarctic highlands(if they existed in the Late Cretaceous)could sequester enough water as ice to cause eustatic falls.To ascertain this requires detailed tomographic imaging of Antarctica,followed by geodynamic modeling,to determine whether high plateaus could have existed to accumulate ephemeral ice sheets.Other mechanisms for sea level change,such as transference between ground water(a small amplitude shorter time scale effect)and the ocean and entrainment and release of water from the mantle to the oceanic reservoir(a potentially large amplitude and longer time scale process),are intriguing and need to be explored further to prove their efficacy at third-order time scales.