The firing of neurons in the hippocampal network has a close relationship with human memory and learning. In this paper, a numerical simulation of interneurons in the hippocampal network has been operated. It analyzes...The firing of neurons in the hippocampal network has a close relationship with human memory and learning. In this paper, a numerical simulation of interneurons in the hippocampal network has been operated. It analyzes the influence of external stimulation on firing rhythms. The diversity of firing pattern, especially the circle of unit firing pattern, is shown by ISI.展开更多
Objective To study degeneration,apoptosis and loss of hippocampal neurons from patients with intractable temporal lobe epilepsy (TLE), and compare with those from epileptiform rats. Methods After established an anim...Objective To study degeneration,apoptosis and loss of hippocampal neurons from patients with intractable temporal lobe epilepsy (TLE), and compare with those from epileptiform rats. Methods After established an animal epilepsy model induced by anti-brain antibody (Munc18) with chronic kinding way in rats,and rats with both epileptiform electroencephalogram and epileptiform activity (at least four weeks) were selected and executed. There were 14 samples of hippocampus and temporal lobe from patients with intractable TLE. Sections from brain samples were investigated for degeneration, apoptosis and loss of neurons by Nissle staining and TUNEL.展开更多
Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a pl...Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a planation surface (relict surface) that was less than 1000 m high formed during the Miocene to Pliocene. The fast uplift, i.e., the Qingzang Movement, began since -3.6 Ma, evidenced by massive molasse deposits around the plateau margin and the synchronous occurrence of faulted basins within the plateau. However, later studies challenged this idea and suggested earlier (8, 14 or 35 Ma) formation of the huge plateau topography. Here we reevaluate the Qingzang Movement on the basis of our previous results and in light of new studies in the recent decades. The plateau margin has been subjected to intensive incision by very large drainages and shows the landscape characteristics of an "infant" stage of the geomorphological cycle. However, these drainages were not formed until 1.7-1.9 Ma; headwater erosion has not yet reached the hinterland of the plateau, so the interior of Tibet is free of significant erosion despite its lofty elevation, and remains an "old stage" landform. If the mean erosion rate is equivalent to the sum of clastic and soluble discharges of the modern rivers draining the Tibetan Plateau, it should have been worn down to a lowland within 8.6 Ma, ignoring tectonic uplift and isostasy. The massive conglomerate around the plateau margin began to deposit at about 3.6 Ma, indicating an increased relief after that time. Furthermore, the Hipparion fauna sites were widely distributed, and elephants, giraffes, and rhinos were abundant in the Qaidam Basin until the early Pliocene. Cenozoic climate change alone is not able to account for the dense occurrence of Hipparion fauna, unless the paleo-elevation of Tibet was lowered. The rise of Tibet since the Qingzang Movement has had a great influence on the Asian interior aridification.展开更多
文摘The firing of neurons in the hippocampal network has a close relationship with human memory and learning. In this paper, a numerical simulation of interneurons in the hippocampal network has been operated. It analyzes the influence of external stimulation on firing rhythms. The diversity of firing pattern, especially the circle of unit firing pattern, is shown by ISI.
文摘Objective To study degeneration,apoptosis and loss of hippocampal neurons from patients with intractable temporal lobe epilepsy (TLE), and compare with those from epileptiform rats. Methods After established an animal epilepsy model induced by anti-brain antibody (Munc18) with chronic kinding way in rats,and rats with both epileptiform electroencephalogram and epileptiform activity (at least four weeks) were selected and executed. There were 14 samples of hippocampus and temporal lobe from patients with intractable TLE. Sections from brain samples were investigated for degeneration, apoptosis and loss of neurons by Nissle staining and TUNEL.
基金supported by the National Natural Science Foundation of China(Grant Nos.41330745,41171014&41271017)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a planation surface (relict surface) that was less than 1000 m high formed during the Miocene to Pliocene. The fast uplift, i.e., the Qingzang Movement, began since -3.6 Ma, evidenced by massive molasse deposits around the plateau margin and the synchronous occurrence of faulted basins within the plateau. However, later studies challenged this idea and suggested earlier (8, 14 or 35 Ma) formation of the huge plateau topography. Here we reevaluate the Qingzang Movement on the basis of our previous results and in light of new studies in the recent decades. The plateau margin has been subjected to intensive incision by very large drainages and shows the landscape characteristics of an "infant" stage of the geomorphological cycle. However, these drainages were not formed until 1.7-1.9 Ma; headwater erosion has not yet reached the hinterland of the plateau, so the interior of Tibet is free of significant erosion despite its lofty elevation, and remains an "old stage" landform. If the mean erosion rate is equivalent to the sum of clastic and soluble discharges of the modern rivers draining the Tibetan Plateau, it should have been worn down to a lowland within 8.6 Ma, ignoring tectonic uplift and isostasy. The massive conglomerate around the plateau margin began to deposit at about 3.6 Ma, indicating an increased relief after that time. Furthermore, the Hipparion fauna sites were widely distributed, and elephants, giraffes, and rhinos were abundant in the Qaidam Basin until the early Pliocene. Cenozoic climate change alone is not able to account for the dense occurrence of Hipparion fauna, unless the paleo-elevation of Tibet was lowered. The rise of Tibet since the Qingzang Movement has had a great influence on the Asian interior aridification.