Objective: To study the rapid effect of glucocorticoids (GCs) on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms. Methods: Whole-cell patch-clamp re...Objective: To study the rapid effect of glucocorticoids (GCs) on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms. Methods: Whole-cell patch-clamp recording was used to assess the effect of stress concentration corticosterone (B) on the responses of cultured hippocampal neurons to glutamate and NMDA (N-methy-D-asparatic acid). To make clear the target of B, intracellular dialysis of B(10 μmol/L)through patch pipette and extracellular application of bovine serum albumin-conjugated corticosterone(B-BSA, 10 μmol/L)were carried out to observe their influence on peak amplitude of NMDA-evoked current. Results: B had a rapid, reversible and inhibitory effect on peak amplitude of GLU- or NMDA-evoked current in cultured hippocampal neurons. Furthermore, B-BSA had the inhibitory effect on INMDA as that of B, but intracellularly dialyzed B had no significant effect on I NMDA. Conclusion: These results suggest that under the condition of stress, GCs may rapidly, negatively regulate excitatory synaptic receptors-glutamate receptors (GluRs), especially NMDA receptor (NMDAR) in central nervous system, which is mediated by rapid membrane mechanisms, but not by classical, genomic mechanisms.展开更多
In the presence of glutamate and co-agonists, e.g., glycine, the N-methyl-D-aspartate receptor (NMDAR) plays an important role in physiological and pathophysiological brain processes. Previous studies indicate glyci...In the presence of glutamate and co-agonists, e.g., glycine, the N-methyl-D-aspartate receptor (NMDAR) plays an important role in physiological and pathophysiological brain processes. Previous studies indicate glycine could inhibit NMDAR respons- es induced by high concentration of NMDA in hippocampal neurons. The mechanism underlying this inhibitory impact, how- ever, has been unclear. In this study, the whole-cell patch-clamp recording and Ca2+ imaging with Fluo-3/AM under laser scanning confocal microscope were used to analyze the possible involvement of NMDAR subnnits in this effect. We found that the peak current of NMDARs and Ca2+ influx induced by high concentration of NMDA were reduced by treatment of gly- cine (0.03-10 I.tmol L-1) in a dose-dependent manner, and that the glycine-dependent inhibition of NMDAR responses, which were induced at 300 mol L-1 NMDA, was reversed by ZnCI2 through the blocking of the NR2A subunit of NMDARs, but was less influenced by ifenprodil, a NR2B inhibitor. Our results suggest that the glycine-dependent inactivation of NMDARs is potentially modulated by the regulatory subunit NR2A.展开更多
New neurons are continuously generated from resident pools of neural stem and precursor cells(NSPCs)in the adult brain.There are multiple pathways through which adult neurogenesis is regulated,and here we review the r...New neurons are continuously generated from resident pools of neural stem and precursor cells(NSPCs)in the adult brain.There are multiple pathways through which adult neurogenesis is regulated,and here we review the role of the N-methyl-D-aspartate receptor(NMDAR)in regulating the proliferation of NSPCs in the adult hippocampus.Hippocampal-dependent learning tasks,enriched environments,running,and activity-dependent synaptic plasticity,all potently up-regulate hippocampal NSPC proliferation.We first consider the requirement of the NMDAR in activity-dependent synaptic plasticity,and the role the induction of synaptic plasticity has in regulating NSPCs and newborn neurons.We address how specific NMDAR agonists and antagonists modulate proliferation,both in vivo and in vitro,and then review the evidence supporting the hypothesis that NMDARs are present on NSPCs.We believe it is important to understand the mechanisms underlying the activation of adult neurogenesis,given the potential that endogenous stem cell populations have for repopulating the hippocampus with functional new neurons.In conditions such as age-related memory decline,neurodegeneration and psychiatric disease,mature neurons are lost or become defective;as such,stimulating adult neurogenesis may provide a therapeutic strategy to overcome these conditions.展开更多
文摘Objective: To study the rapid effect of glucocorticoids (GCs) on NMDA receptor activity in hippocampal neurons in stress and to elucidate its underlying probable membrane mechanisms. Methods: Whole-cell patch-clamp recording was used to assess the effect of stress concentration corticosterone (B) on the responses of cultured hippocampal neurons to glutamate and NMDA (N-methy-D-asparatic acid). To make clear the target of B, intracellular dialysis of B(10 μmol/L)through patch pipette and extracellular application of bovine serum albumin-conjugated corticosterone(B-BSA, 10 μmol/L)were carried out to observe their influence on peak amplitude of NMDA-evoked current. Results: B had a rapid, reversible and inhibitory effect on peak amplitude of GLU- or NMDA-evoked current in cultured hippocampal neurons. Furthermore, B-BSA had the inhibitory effect on INMDA as that of B, but intracellularly dialyzed B had no significant effect on I NMDA. Conclusion: These results suggest that under the condition of stress, GCs may rapidly, negatively regulate excitatory synaptic receptors-glutamate receptors (GluRs), especially NMDA receptor (NMDAR) in central nervous system, which is mediated by rapid membrane mechanisms, but not by classical, genomic mechanisms.
基金supported by the National Basic Research Program of China (Grant No. J20110170)the National Natural Science Foundation of China (Grant Nos. 81000497 and 81071614)
文摘In the presence of glutamate and co-agonists, e.g., glycine, the N-methyl-D-aspartate receptor (NMDAR) plays an important role in physiological and pathophysiological brain processes. Previous studies indicate glycine could inhibit NMDAR respons- es induced by high concentration of NMDA in hippocampal neurons. The mechanism underlying this inhibitory impact, how- ever, has been unclear. In this study, the whole-cell patch-clamp recording and Ca2+ imaging with Fluo-3/AM under laser scanning confocal microscope were used to analyze the possible involvement of NMDAR subnnits in this effect. We found that the peak current of NMDARs and Ca2+ influx induced by high concentration of NMDA were reduced by treatment of gly- cine (0.03-10 I.tmol L-1) in a dose-dependent manner, and that the glycine-dependent inhibition of NMDAR responses, which were induced at 300 mol L-1 NMDA, was reversed by ZnCI2 through the blocking of the NR2A subunit of NMDARs, but was less influenced by ifenprodil, a NR2B inhibitor. Our results suggest that the glycine-dependent inactivation of NMDARs is potentially modulated by the regulatory subunit NR2A.
文摘New neurons are continuously generated from resident pools of neural stem and precursor cells(NSPCs)in the adult brain.There are multiple pathways through which adult neurogenesis is regulated,and here we review the role of the N-methyl-D-aspartate receptor(NMDAR)in regulating the proliferation of NSPCs in the adult hippocampus.Hippocampal-dependent learning tasks,enriched environments,running,and activity-dependent synaptic plasticity,all potently up-regulate hippocampal NSPC proliferation.We first consider the requirement of the NMDAR in activity-dependent synaptic plasticity,and the role the induction of synaptic plasticity has in regulating NSPCs and newborn neurons.We address how specific NMDAR agonists and antagonists modulate proliferation,both in vivo and in vitro,and then review the evidence supporting the hypothesis that NMDARs are present on NSPCs.We believe it is important to understand the mechanisms underlying the activation of adult neurogenesis,given the potential that endogenous stem cell populations have for repopulating the hippocampus with functional new neurons.In conditions such as age-related memory decline,neurodegeneration and psychiatric disease,mature neurons are lost or become defective;as such,stimulating adult neurogenesis may provide a therapeutic strategy to overcome these conditions.