The feasibility of oxidation leaching process of nickel from nickel sulfide ore and the form of different components in the lixivium has been studied at first. The method of leaching nickel sulfide concentration direc...The feasibility of oxidation leaching process of nickel from nickel sulfide ore and the form of different components in the lixivium has been studied at first. The method of leaching nickel sulfide concentration directly by oxidants with existence of ultrasonic has been advanced. The process of leaching nickel from nickel sulfide concentration by using the system of persulfate and silver has been determined. The influence of different factors on the leaching rates of nickel,such as with and without ultrasonic,the concentration of Na2S2O8,liquid-solid ratio and the concentration of AgNO3 have been explored. The results show that:(1) in the oxidative leaching system,nickel can be leached completely as Ni2+ or NiSO4(aq.) from nickel sulfide concentration in theory;(2) the nicopyrite can not exist steadily in the persulfate acid leaching system,but Ni2+can. Meanwhile,sulfur may be existed steadily in the leaching process;(3) nicopyrite with much lower electrostatic potential may be leached earlier than chalcopyrite and sideropyrite;and(4) the overall reaction rate of the leaching process can be enhanced with ultrasonic radiation,but it does not change the mechanism of leaching. The more oxidant concentration or higher liquid-solid ratio is,the higher leaching percentage of nickel. The leaching percentage of nickel can be increased significantly by adding a small amount of AgNO3 during the leaching processes. Under the same conditions,the higher concentration of AgNO3 is,the higher leaching yields of nickel will be obtained.展开更多
The concentration and variational trend of As3 +and As 5+,the bacterial resistance for the As 3+and As 5+and converting conditions from As3 +to As 5+were analyzed.The additive was used to prompt the bacterial leaching...The concentration and variational trend of As3 +and As 5+,the bacterial resistance for the As 3+and As 5+and converting conditions from As3 +to As 5+were analyzed.The additive was used to prompt the bacterial leaching efficiency by changing valence state of arsenic.The results show that the concentration of As 3+ is larger than that of As 5+ in the lag phase.The concentration of As 3+ decreases in the log phase,and is lower than that of As5 +.HQ-0211 typed bacteria express better resistance for As 3+and As 5+and remain growing when the concentrations of As3 +and As 5+are above 6.0 g/L and 12.0 g/L,respectively.It is found that Fe 3+cannot oxidize As3 +singly as strong oxidant in the leaching system,but can cooperate with pyrite or chalcopyrite to do that.The oxidation of As 3+ is prompted with addition of H2O2.The bacterial activity is improved in favor of bacterial leaching efficiency.NaClO restrains the bacterial growth to depress leaching efficiency because of the chloric compounds affecting bacterial activity.展开更多
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran...Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.展开更多
The study is focused on the extraction of valuable metals from automotive shredder residue(ASR)by different leaching solutions.First,ASR samples were roasted at 600°C to simulate a thermal treatment processing.Di...The study is focused on the extraction of valuable metals from automotive shredder residue(ASR)by different leaching solutions.First,ASR samples were roasted at 600°C to simulate a thermal treatment processing.Distilled water,citric and sulphuric acid were preliminarily investigated,thus two further full factorial systems entailing H2SO4–H2O2and H2SO4–H2O2–Fe3+were tested.The preliminary experimental results showed that0.1 mol·L-1H2SO4solution extracted 100%of Cu,Fe and Zn,whereas citric acid leached 100%of Zn and Pb,59%of Fe and 62%of Cu;whereas,H2SO4–H2O2and H2SO4–H2O2–Fe3+(Fenton's)leaching media showed that Cu,Fe and Zn can be extracted simultaneously and completely from the ASR ashes before final disposal.展开更多
In order to decrease the evaporating rate of ammonia and increase the solubility of copper in the solution,ethylenediamine was added into the ammonia-ammonium chloride system to leach the copper-containing oxide ores....In order to decrease the evaporating rate of ammonia and increase the solubility of copper in the solution,ethylenediamine was added into the ammonia-ammonium chloride system to leach the copper-containing oxide ores.The thermodynamic model was constructed and the solubility of malachite Cu2(OH)2CO3 in the ammonia-ammonium chloride-ethylenediamine(En)-water system was calculated using the exponential computation method based on both mass balance and charge balance.It is found that the solubility of copper can be increased and the free ammonia concentration can be decreased by submitting partial ammonia with ethylenediamine.The lower free ammonia concentration in the solution is a guarantee to the lower evaporating rate of ammonia.The conditions of malachite Cu2(OH)2CO3 converting to atacamite Cu(OH)1.5Cl0.5 were also studied.A group of experiments were designed to validate the veracity of the results of the thermodynamic calculation.It is found that the thermodynamic model is reliable and it can guide the leaching process.展开更多
基金Supported by the National Natural Science Foundation of China (50874087 50978212) the Key Projects in the National Science and Technology Pillar Program (2009BAA20B02)
文摘The feasibility of oxidation leaching process of nickel from nickel sulfide ore and the form of different components in the lixivium has been studied at first. The method of leaching nickel sulfide concentration directly by oxidants with existence of ultrasonic has been advanced. The process of leaching nickel from nickel sulfide concentration by using the system of persulfate and silver has been determined. The influence of different factors on the leaching rates of nickel,such as with and without ultrasonic,the concentration of Na2S2O8,liquid-solid ratio and the concentration of AgNO3 have been explored. The results show that:(1) in the oxidative leaching system,nickel can be leached completely as Ni2+ or NiSO4(aq.) from nickel sulfide concentration in theory;(2) the nicopyrite can not exist steadily in the persulfate acid leaching system,but Ni2+can. Meanwhile,sulfur may be existed steadily in the leaching process;(3) nicopyrite with much lower electrostatic potential may be leached earlier than chalcopyrite and sideropyrite;and(4) the overall reaction rate of the leaching process can be enhanced with ultrasonic radiation,but it does not change the mechanism of leaching. The more oxidant concentration or higher liquid-solid ratio is,the higher leaching percentage of nickel. The leaching percentage of nickel can be increased significantly by adding a small amount of AgNO3 during the leaching processes. Under the same conditions,the higher concentration of AgNO3 is,the higher leaching yields of nickel will be obtained.
基金Projects(50674029, 50874030) supported by the National Natural Science Foundation of ChinaProject(2006AA06Z127) supported by the National High-tech Research and Development Program of ChinaProject(20060145015) supported by Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘The concentration and variational trend of As3 +and As 5+,the bacterial resistance for the As 3+and As 5+and converting conditions from As3 +to As 5+were analyzed.The additive was used to prompt the bacterial leaching efficiency by changing valence state of arsenic.The results show that the concentration of As 3+ is larger than that of As 5+ in the lag phase.The concentration of As 3+ decreases in the log phase,and is lower than that of As5 +.HQ-0211 typed bacteria express better resistance for As 3+and As 5+and remain growing when the concentrations of As3 +and As 5+are above 6.0 g/L and 12.0 g/L,respectively.It is found that Fe 3+cannot oxidize As3 +singly as strong oxidant in the leaching system,but can cooperate with pyrite or chalcopyrite to do that.The oxidation of As 3+ is prompted with addition of H2O2.The bacterial activity is improved in favor of bacterial leaching efficiency.NaClO restrains the bacterial growth to depress leaching efficiency because of the chloric compounds affecting bacterial activity.
基金Projects(50934002,51104011) supported by the National Natural Science Foundation of ChinaProject(IRT0950) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese UniversityProject(20100480200) supported by China Postdoctoral Science Foundation
文摘Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.
文摘The study is focused on the extraction of valuable metals from automotive shredder residue(ASR)by different leaching solutions.First,ASR samples were roasted at 600°C to simulate a thermal treatment processing.Distilled water,citric and sulphuric acid were preliminarily investigated,thus two further full factorial systems entailing H2SO4–H2O2and H2SO4–H2O2–Fe3+were tested.The preliminary experimental results showed that0.1 mol·L-1H2SO4solution extracted 100%of Cu,Fe and Zn,whereas citric acid leached 100%of Zn and Pb,59%of Fe and 62%of Cu;whereas,H2SO4–H2O2and H2SO4–H2O2–Fe3+(Fenton's)leaching media showed that Cu,Fe and Zn can be extracted simultaneously and completely from the ASR ashes before final disposal.
基金Project(2007CB613604)supported by the National Basic Research Program of ChinaProject(50674104)supported by the National Natural Science Foundation of China
文摘In order to decrease the evaporating rate of ammonia and increase the solubility of copper in the solution,ethylenediamine was added into the ammonia-ammonium chloride system to leach the copper-containing oxide ores.The thermodynamic model was constructed and the solubility of malachite Cu2(OH)2CO3 in the ammonia-ammonium chloride-ethylenediamine(En)-water system was calculated using the exponential computation method based on both mass balance and charge balance.It is found that the solubility of copper can be increased and the free ammonia concentration can be decreased by submitting partial ammonia with ethylenediamine.The lower free ammonia concentration in the solution is a guarantee to the lower evaporating rate of ammonia.The conditions of malachite Cu2(OH)2CO3 converting to atacamite Cu(OH)1.5Cl0.5 were also studied.A group of experiments were designed to validate the veracity of the results of the thermodynamic calculation.It is found that the thermodynamic model is reliable and it can guide the leaching process.