The bioleaching of molybdenum from its sulfide ore using a Mo-resistant thermophilic bacterium sulfolobus metallics combined with a membrane biological reactor(MBR) was studied.The experimental results showed that t...The bioleaching of molybdenum from its sulfide ore using a Mo-resistant thermophilic bacterium sulfolobus metallics combined with a membrane biological reactor(MBR) was studied.The experimental results showed that the concentration of Mo can be controlled by filter of the membrane in MBR and the toxicity of Mo to microorganism is decreased in the process of bioleaching.It was also evidenced that there were different leaching rates of Ni and Mo when the concentration of Mo was different.After leaching for 20 d in the MBR at Mo concentration of 395 mg/L,the leaching rates of Ni and Mo reached the maximum of 79.57% and 56.23% respectively under the conditions of 100 g/L of mineral density,65 ℃,pH=2 and 1.0 L/min of the aeration rate.While 75.59% Ni and 54.33% Mo were leached out in column without membrane under the same conditions.展开更多
To extract molybdenum and nickel from the roasted Ni-Mo ore, a process of hydrochloric acid leaching, sulphation roasting and water leaching was investigated. The results showed that this process could get a high leac...To extract molybdenum and nickel from the roasted Ni-Mo ore, a process of hydrochloric acid leaching, sulphation roasting and water leaching was investigated. The results showed that this process could get a high leaching rate of Mo and Ni. Under the optimum conditions of hydrochloric acid leaching (roasted Ni-Mo ore leached with 0.219 mL/g hydrochloric acid addition at 65 ℃ for 30 min with a L/S ratio of 3 mL/g), sulphation roasting (51.9% sulfiaric acid addition, roasting temperature 240 ℃ for 1 h), followed by leaching with the first stage hydrochloric acid leaching solution at 95 ℃ for 2 h, the leaching rates of Mo and Ni reached 95.8% and 91.3%, respectively.展开更多
The application of the response surface methodology and the central composite design(CCD) technique for modeling and optimization of the influence of some operating variables on copper,molybdenum and rhenium recover...The application of the response surface methodology and the central composite design(CCD) technique for modeling and optimization of the influence of some operating variables on copper,molybdenum and rhenium recoveries in a bioleaching process was investigated.Three main bioleaching parameters,namely pH,solid concentration and inoculum percent,were changed during the bioleaching tests based on CCD.The ranges of the bioleaching process variables used in the design were as follows:pH1.46-2.14,solid concentration 0.95%-11.05%,and inoculum percent 1.59%-18.41%.A total of 20 bioleaching tests were carried out by the CCD method according to software-based designed matrix.Empirical model equations were developed according to the copper,molybdenum and rhenium recoveries obtained with these three parameters.Model equations of responses at the base of parameters were achieved by using statistical software.The model equations were then individually optimized by using quadratic programming to maximize copper,molybdenum and rhenium recoveries individually within the experimental range.The optimum conditions for copper recovery were pH 1.68,solid concentration 0.95% and the inoculum 18.41%(v/v),while molybdenum and rhenium recoveries were 2.18% and 24.41%,respectively.The predicted values for copper,molybdenum and rhenium recoveries were found to be in good agreement with the experimental values.Also jarosite formation during bioleaching tests was also investigated.展开更多
The leaching results of bismuth sulfide concentrate containing molybdenum and tungsten in air-H2O2-NaOH system, pressure-O2-Na2CO3 system and pressure-O2-NaOH system were investigated. The results show that the extrac...The leaching results of bismuth sulfide concentrate containing molybdenum and tungsten in air-H2O2-NaOH system, pressure-O2-Na2CO3 system and pressure-O2-NaOH system were investigated. The results show that the extraction of molybdenum, tungsten and sulfur goes up with the increase of NaOH concentration, oxygen partial pressure and reaction time. The extraction of molybdenum and tungsten also rises up with temperature, but the leaching ratio of sulfur increases initially to a peak of 98% at 150℃ and then decreases with the increase of temperature. Under the optimal conditions, the extraction of molybdenum, tungsten and sulfur is more than 95.6%, 93.8% and 96.0%, respectively, and the main phases of residue are Bi2O3 and Fe2O3. Therefore, the method of pressure leaching in alkaline solution is provided as an effective separation of molybdenum, tungsten and sulfur from bismuth and a beneficial pretreatment for consequent process.展开更多
A direct alkaline leaching process was proposed to extract molybdenum and lead from low-grade wulfenite ore containing 2.87%Mo and 9.39%Pb.The results show that increasing temperature and alkali concentration enhances...A direct alkaline leaching process was proposed to extract molybdenum and lead from low-grade wulfenite ore containing 2.87%Mo and 9.39%Pb.The results show that increasing temperature and alkali concentration enhances the extraction of Mo and Pb,and more than 99.7%of Mo and 64.6%of Pb are extracted under conditions of 75℃,L/S of 2:1,leaching time of 1.0 h,initial NaOH concentration of 80 g/L and stirring speed of 100 r/min.The alkaline leaching of molybdenum follows a chemical reaction control mechanism with activation energy of 46.3 kJ/mol.Lead in the residue is recovered by hydrochloric acid leaching.99.8%of lead is leached under the conditions of 80℃,[MnO2]/[Pb]molar ratio of 1.3:1,sodium chloride concentration of 40 g/L,and hydrochloric acid concentration of 3 mol/L,and a product of crystallized PbCl2 with purity higher than 99.5%is obtained after cooling.展开更多
Calcium molybdate(CaMoO4)is the main component of powellite and is a predominant intermediate in the pyrometallurgical and hydrometallurgical process of molybdenum.The extraction of Mo from CaMoO4 by a combination of ...Calcium molybdate(CaMoO4)is the main component of powellite and is a predominant intermediate in the pyrometallurgical and hydrometallurgical process of molybdenum.The extraction of Mo from CaMoO4 by a combination of phosphoric acid and hydrochloric acid was investigated.For further understanding of the leaching mechanism,the effects of five key factors were studied to describe the leaching kinetics.The results indicated that the dissolution rate of CaMoO4 was independent of the stirring speed.Mo extraction significantly increased with increasing HCl concentration and temperature,but decreased with increasing particle size.A shrinking core model with surface chemical reaction was found to withstand the dissolution of CaMoO4.The apparent activation energy was calculated to be 70.879 kJ/mol,and a semi-empirical equation was derived for the rate of reaction.展开更多
A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roas...A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.展开更多
The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorpti...The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.展开更多
The thermodynamic equilibrium diagrams of CaMoO_(4)-CaSO_(4)-H_(2)SO_(4)-H_(2)O,CaMoO_(4)-HCl-H_(2)O and CaSO_(4)-CaCl_(2)-HCl-H_(2)O systems at 298 K were established.The calculation results demonstrated that HCl dis...The thermodynamic equilibrium diagrams of CaMoO_(4)-CaSO_(4)-H_(2)SO_(4)-H_(2)O,CaMoO_(4)-HCl-H_(2)O and CaSO_(4)-CaCl_(2)-HCl-H_(2)O systems at 298 K were established.The calculation results demonstrated that HCl displays a much higher solubility of CaSO_(4)than H_(2)SO_(4).The leaching mechanism of Mo from CaMoO_(4)calcine was systematically investigated from the perspective of the micro particle properties variation.HCl exhibits an excellent leaching performance for Mo from CaMoO_(4)calcine due to the elimination of surface coating and the dissolution of a mass of Mo embedded in CaSO_(4)matrix.Excellent Mo leaching efficiency of 99.7%was achieved under the optimal conditions of decomposing CaMoO_(4)calcine by 2.4 mol/L HCl with a liquid/solid ratio of 10:1 at 50°C for 60 min.Based on the experimental results,a highly efficient and green cycle leaching process of molybdenum from molybdenite was proposed,which eliminated surface coating and physical entraining,and converted most of the calcium from CaMoO_(4)calcine into high purity gypsum by-product.展开更多
The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concen...The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.展开更多
The kinetics of leaching arsenic from Ni-Mo ore roasting dust was investigated. The effects including leaching temperature, particle size of the smelter dust, stirring speed, the coefficient β(the molar ratio of sod...The kinetics of leaching arsenic from Ni-Mo ore roasting dust was investigated. The effects including leaching temperature, particle size of the smelter dust, stirring speed, the coefficient β(the molar ratio of sodium chlorate to arsenic in the smelter dust) and the initial H+ concentration on leaching arsenic were studied. The results indicate that the leaching of arsenic increases sharply with the decrease of particle size. The orders of reaction with respect to H+ concentration and particle size are determinted to be 1.136 and 1.806, respectively. The leaching of arsenic reaches 99% under experimental conditions, the apparent activation energy is determined to be 11.157 kJ/mol, which is consistent with the values of activation energy for diffusion model The kinetics equation of leaching arsenic from the roasting dust could be expressed by a semi-empirical equation as 1-2/3η (1 -η)^2/3 = k0(c[H+])^1.136ro^-1.806 exp[(-11157 /RT)t].展开更多
The separation of rhenium from molybdenum in aqueous solution has always been a problem in hydrometallurgy. The separation of rhenium from the electro-oxidation leachate of molybdenite and its mechanism were investiga...The separation of rhenium from molybdenum in aqueous solution has always been a problem in hydrometallurgy. The separation of rhenium from the electro-oxidation leachate of molybdenite and its mechanism were investigated. The results show that pH of the leachate significantly affects adsorption rate compared with other experimental parameters. When temperature is 30℃, pH=8, and adsorbing time is 1 h, adsorption rates of rhenium and molybdenum are 93.46% and 3.57%, respectively, and separation factor of D301 resin for rhenium and molybdenum is 169.56. In addition, the separation factor is higher when the initial molybdenum concentration in model solution is increased. The saturated adsorption capacity of D301 resin for molybdenum and rhenium calculated based on simulated results are 4.263 3 mmol/g and 4.235 5 mmol/g, respectively. D301 resin is an effective separation material of rhenium from electric-oxidation leachate of molybdenite. The adsorption kinetics results also show that the adsorption of rhenium is easier than that of molybdenum, and the adsorption process of D301 for rhenium and molybdenum may be controlled by liquid film diffusion.展开更多
文摘The bioleaching of molybdenum from its sulfide ore using a Mo-resistant thermophilic bacterium sulfolobus metallics combined with a membrane biological reactor(MBR) was studied.The experimental results showed that the concentration of Mo can be controlled by filter of the membrane in MBR and the toxicity of Mo to microorganism is decreased in the process of bioleaching.It was also evidenced that there were different leaching rates of Ni and Mo when the concentration of Mo was different.After leaching for 20 d in the MBR at Mo concentration of 395 mg/L,the leaching rates of Ni and Mo reached the maximum of 79.57% and 56.23% respectively under the conditions of 100 g/L of mineral density,65 ℃,pH=2 and 1.0 L/min of the aeration rate.While 75.59% Ni and 54.33% Mo were leached out in column without membrane under the same conditions.
基金Project(51104186)supported by the National Natural Science Foundation of ChinaProjects(2016zzts282,2016zzts283)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘To extract molybdenum and nickel from the roasted Ni-Mo ore, a process of hydrochloric acid leaching, sulphation roasting and water leaching was investigated. The results showed that this process could get a high leaching rate of Mo and Ni. Under the optimum conditions of hydrochloric acid leaching (roasted Ni-Mo ore leached with 0.219 mL/g hydrochloric acid addition at 65 ℃ for 30 min with a L/S ratio of 3 mL/g), sulphation roasting (51.9% sulfiaric acid addition, roasting temperature 240 ℃ for 1 h), followed by leaching with the first stage hydrochloric acid leaching solution at 95 ℃ for 2 h, the leaching rates of Mo and Ni reached 95.8% and 91.3%, respectively.
基金supported by the National Iranian Copper Industry Co. and Geological Survey of Iran
文摘The application of the response surface methodology and the central composite design(CCD) technique for modeling and optimization of the influence of some operating variables on copper,molybdenum and rhenium recoveries in a bioleaching process was investigated.Three main bioleaching parameters,namely pH,solid concentration and inoculum percent,were changed during the bioleaching tests based on CCD.The ranges of the bioleaching process variables used in the design were as follows:pH1.46-2.14,solid concentration 0.95%-11.05%,and inoculum percent 1.59%-18.41%.A total of 20 bioleaching tests were carried out by the CCD method according to software-based designed matrix.Empirical model equations were developed according to the copper,molybdenum and rhenium recoveries obtained with these three parameters.Model equations of responses at the base of parameters were achieved by using statistical software.The model equations were then individually optimized by using quadratic programming to maximize copper,molybdenum and rhenium recoveries individually within the experimental range.The optimum conditions for copper recovery were pH 1.68,solid concentration 0.95% and the inoculum 18.41%(v/v),while molybdenum and rhenium recoveries were 2.18% and 24.41%,respectively.The predicted values for copper,molybdenum and rhenium recoveries were found to be in good agreement with the experimental values.Also jarosite formation during bioleaching tests was also investigated.
文摘The leaching results of bismuth sulfide concentrate containing molybdenum and tungsten in air-H2O2-NaOH system, pressure-O2-Na2CO3 system and pressure-O2-NaOH system were investigated. The results show that the extraction of molybdenum, tungsten and sulfur goes up with the increase of NaOH concentration, oxygen partial pressure and reaction time. The extraction of molybdenum and tungsten also rises up with temperature, but the leaching ratio of sulfur increases initially to a peak of 98% at 150℃ and then decreases with the increase of temperature. Under the optimal conditions, the extraction of molybdenum, tungsten and sulfur is more than 95.6%, 93.8% and 96.0%, respectively, and the main phases of residue are Bi2O3 and Fe2O3. Therefore, the method of pressure leaching in alkaline solution is provided as an effective separation of molybdenum, tungsten and sulfur from bismuth and a beneficial pretreatment for consequent process.
基金Project(2012BAB10B06) supported by the National Science and Technology Pillar Program of ChinaProject(51434001) supported by the National Natural Science Foundation of China
文摘A direct alkaline leaching process was proposed to extract molybdenum and lead from low-grade wulfenite ore containing 2.87%Mo and 9.39%Pb.The results show that increasing temperature and alkali concentration enhances the extraction of Mo and Pb,and more than 99.7%of Mo and 64.6%of Pb are extracted under conditions of 75℃,L/S of 2:1,leaching time of 1.0 h,initial NaOH concentration of 80 g/L and stirring speed of 100 r/min.The alkaline leaching of molybdenum follows a chemical reaction control mechanism with activation energy of 46.3 kJ/mol.Lead in the residue is recovered by hydrochloric acid leaching.99.8%of lead is leached under the conditions of 80℃,[MnO2]/[Pb]molar ratio of 1.3:1,sodium chloride concentration of 40 g/L,and hydrochloric acid concentration of 3 mol/L,and a product of crystallized PbCl2 with purity higher than 99.5%is obtained after cooling.
基金Project(2017M610766)supported by China Postdoctoral Science FoundationProject(FRF-BD-17-010A)supported by the Fundamental Research Funds for the Central Universities,China
文摘Calcium molybdate(CaMoO4)is the main component of powellite and is a predominant intermediate in the pyrometallurgical and hydrometallurgical process of molybdenum.The extraction of Mo from CaMoO4 by a combination of phosphoric acid and hydrochloric acid was investigated.For further understanding of the leaching mechanism,the effects of five key factors were studied to describe the leaching kinetics.The results indicated that the dissolution rate of CaMoO4 was independent of the stirring speed.Mo extraction significantly increased with increasing HCl concentration and temperature,but decreased with increasing particle size.A shrinking core model with surface chemical reaction was found to withstand the dissolution of CaMoO4.The apparent activation energy was calculated to be 70.879 kJ/mol,and a semi-empirical equation was derived for the rate of reaction.
基金Project(2003 UDBEA00C020) supported by the Collaborative Project of School and Province of Yunnan Province
文摘A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.
基金Projects(21376251,21406233) supported by the National Natural Science Foundation of China
文摘The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.
基金financially supported by the Joint Fund for Nuclear Technology Innovation Sponsored by the National Natural Science Foundation of China and the China National Nuclear Corporation(No.U2067201)。
文摘The thermodynamic equilibrium diagrams of CaMoO_(4)-CaSO_(4)-H_(2)SO_(4)-H_(2)O,CaMoO_(4)-HCl-H_(2)O and CaSO_(4)-CaCl_(2)-HCl-H_(2)O systems at 298 K were established.The calculation results demonstrated that HCl displays a much higher solubility of CaSO_(4)than H_(2)SO_(4).The leaching mechanism of Mo from CaMoO_(4)calcine was systematically investigated from the perspective of the micro particle properties variation.HCl exhibits an excellent leaching performance for Mo from CaMoO_(4)calcine due to the elimination of surface coating and the dissolution of a mass of Mo embedded in CaSO_(4)matrix.Excellent Mo leaching efficiency of 99.7%was achieved under the optimal conditions of decomposing CaMoO_(4)calcine by 2.4 mol/L HCl with a liquid/solid ratio of 10:1 at 50°C for 60 min.Based on the experimental results,a highly efficient and green cycle leaching process of molybdenum from molybdenite was proposed,which eliminated surface coating and physical entraining,and converted most of the calcium from CaMoO_(4)calcine into high purity gypsum by-product.
基金Project(51364009) supported by the National Natural Science Foundation of ChinaProject(JSU071302) supported by the Construct Program of the Key Discipline in Hunan Province,ChinaProject(2015JJ2115) supported by the Natural Science Foundation of Hunan Province,China
文摘The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.
基金Project(DY125-11-T-02)supported by the International Waters Resources Investigation and Development of"12.5",ChinaProject(A2012-102)supported by the Foundation of Changsha Institute of Mining and Metallurgy,China
文摘The kinetics of leaching arsenic from Ni-Mo ore roasting dust was investigated. The effects including leaching temperature, particle size of the smelter dust, stirring speed, the coefficient β(the molar ratio of sodium chlorate to arsenic in the smelter dust) and the initial H+ concentration on leaching arsenic were studied. The results indicate that the leaching of arsenic increases sharply with the decrease of particle size. The orders of reaction with respect to H+ concentration and particle size are determinted to be 1.136 and 1.806, respectively. The leaching of arsenic reaches 99% under experimental conditions, the apparent activation energy is determined to be 11.157 kJ/mol, which is consistent with the values of activation energy for diffusion model The kinetics equation of leaching arsenic from the roasting dust could be expressed by a semi-empirical equation as 1-2/3η (1 -η)^2/3 = k0(c[H+])^1.136ro^-1.806 exp[(-11157 /RT)t].
基金Foundation item: Project(21106188) supported by the National Natural Science Foundation of China Project(12JJ4013) supported by Htman Provincial Natural Science Foundation of China+2 种基金 Projects(2011M501299, 2012T50709) supported by China Postdoctoral Science Foundation Project(2011QNZT050) supported by the Special Fund from the Central Collegiate Basic Scientific Research Bursary of Central South University, China Project(CSUZC2012038) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University, China
文摘The separation of rhenium from molybdenum in aqueous solution has always been a problem in hydrometallurgy. The separation of rhenium from the electro-oxidation leachate of molybdenite and its mechanism were investigated. The results show that pH of the leachate significantly affects adsorption rate compared with other experimental parameters. When temperature is 30℃, pH=8, and adsorbing time is 1 h, adsorption rates of rhenium and molybdenum are 93.46% and 3.57%, respectively, and separation factor of D301 resin for rhenium and molybdenum is 169.56. In addition, the separation factor is higher when the initial molybdenum concentration in model solution is increased. The saturated adsorption capacity of D301 resin for molybdenum and rhenium calculated based on simulated results are 4.263 3 mmol/g and 4.235 5 mmol/g, respectively. D301 resin is an effective separation material of rhenium from electric-oxidation leachate of molybdenite. The adsorption kinetics results also show that the adsorption of rhenium is easier than that of molybdenum, and the adsorption process of D301 for rhenium and molybdenum may be controlled by liquid film diffusion.