As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the charact...As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the characteristics of reinforced soil after immersion.In this study,water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported.Several factors,including polymer content(1%,2%,3%and 4%by weight of dry sand),immersion time(6,12,24 and 48 h),dry density(1.40,1.45,1.50,1.55 and 1.60 g/cm^(3),)and fiber content(0.2%,0.4%,0.6%and 0.8%by weight of dry sand)which may influence the strength characteristics of reinforced sand after immersion were analyzed.The microstructure of reinforced sand was analyzed with nuclear magnetic resonance(NMR)and scanning electron microscope(SEM).Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time;the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content.Fiber plays an active role in reducing water-induced loss of strength at 0.6%content.展开更多
An experimental investigation was conducted to study the efficiency of thermal insulation of composite PCMs (phase change materials) produced by vacuum impregnation process between paraffin (PCMs) and fly ash part...An experimental investigation was conducted to study the efficiency of thermal insulation of composite PCMs (phase change materials) produced by vacuum impregnation process between paraffin (PCMs) and fly ash particles. DSC (differential scanning calorimeter) has been used to determine the thermal properties of latent heat of melting and heat capacity for composite PCMs. Vacuum impregnation pressure of 40 in.Hg, paraffin melting temperature of 90℃, vacuum time and impregnation time of paraffin of 30 min are the optimum condition of composite PCMs productions. The values of latent heat of melting and heat capacity are 74.00 J/g and 15.726 J/g.℃ for composite PCMs that produces by the optimum condition in vacuum impregnation process. Increasing the amount of composite PCMs replacing for cement in mortars causes the compressive strength, flexural strength and tensile strength reduction. Compressive strength, flexural strength and tensile strength of mortar with and without composite PCMs can be increased by the longer time of water curing for mortar specimens. Thermal conductivity (k) of mortar cement is reduced by increasing the amount of composite PCMs which replaced for cement in mortar plate compositions. Composite PCMs have the efficiency for thermal energy insulation when incorporated into the buildings. Therefore, this property of paraffin/fly ash composites PCMs can reduce the energy consumption for temperature control in the buildings.展开更多
基金Project(41472241)supported by the National Natural Science Foundation of ChinaProject(KJXM2019028)supported by the Natural Resources Science and Technology Project of Jiangsu Province,ChinaProject(2019B17314)supported by the Fundamental Research Funds for the Central Universities,China。
文摘As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the characteristics of reinforced soil after immersion.In this study,water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported.Several factors,including polymer content(1%,2%,3%and 4%by weight of dry sand),immersion time(6,12,24 and 48 h),dry density(1.40,1.45,1.50,1.55 and 1.60 g/cm^(3),)and fiber content(0.2%,0.4%,0.6%and 0.8%by weight of dry sand)which may influence the strength characteristics of reinforced sand after immersion were analyzed.The microstructure of reinforced sand was analyzed with nuclear magnetic resonance(NMR)and scanning electron microscope(SEM).Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time;the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content.Fiber plays an active role in reducing water-induced loss of strength at 0.6%content.
文摘An experimental investigation was conducted to study the efficiency of thermal insulation of composite PCMs (phase change materials) produced by vacuum impregnation process between paraffin (PCMs) and fly ash particles. DSC (differential scanning calorimeter) has been used to determine the thermal properties of latent heat of melting and heat capacity for composite PCMs. Vacuum impregnation pressure of 40 in.Hg, paraffin melting temperature of 90℃, vacuum time and impregnation time of paraffin of 30 min are the optimum condition of composite PCMs productions. The values of latent heat of melting and heat capacity are 74.00 J/g and 15.726 J/g.℃ for composite PCMs that produces by the optimum condition in vacuum impregnation process. Increasing the amount of composite PCMs replacing for cement in mortars causes the compressive strength, flexural strength and tensile strength reduction. Compressive strength, flexural strength and tensile strength of mortar with and without composite PCMs can be increased by the longer time of water curing for mortar specimens. Thermal conductivity (k) of mortar cement is reduced by increasing the amount of composite PCMs which replaced for cement in mortar plate compositions. Composite PCMs have the efficiency for thermal energy insulation when incorporated into the buildings. Therefore, this property of paraffin/fly ash composites PCMs can reduce the energy consumption for temperature control in the buildings.