A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface i...A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.展开更多
The optimized leaching techniques were studied by technical experiment and neural network optimization for improving indium leaching rate. Firstly, effect of single technical parameter on leaching rate was investigate...The optimized leaching techniques were studied by technical experiment and neural network optimization for improving indium leaching rate. Firstly, effect of single technical parameter on leaching rate was investigated experimentally with other parameters fixed as constants. The results show that increasing residual acidity can improve leaching rate of indium. Increasing the oxidant content can obviously increase leaching rate but the further addition of oxidant could not improve the leaching rate. The enhancement of temperature can improve the leaching rate while the further enhancement of temperature decreases it. Extension leaching time can improve the leaching rate. On this basis, a BPNN model was established to study the effects of multi-parameters on leaching rate. The results show that the relative error is extremely small, thus the BPNN model has a high prediction precision. At last, optimized technical parameters which can yield high leaching rate of 99.5%were obtained by experimental and BPNN studies:residual acidity 50-60 g/L, oxidant addition content 10%, leaching temperature 70 ℃ and leaching time 2 h.展开更多
The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and o...The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.展开更多
A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/s...A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.展开更多
基金supported by the Open Project of Key Laboratory of Aerospace EDLA,CASC(No.EDL19092208)。
文摘A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.
基金Project(2012BAE06B01)supported by the National Key Technologies R&D Program of China
文摘The optimized leaching techniques were studied by technical experiment and neural network optimization for improving indium leaching rate. Firstly, effect of single technical parameter on leaching rate was investigated experimentally with other parameters fixed as constants. The results show that increasing residual acidity can improve leaching rate of indium. Increasing the oxidant content can obviously increase leaching rate but the further addition of oxidant could not improve the leaching rate. The enhancement of temperature can improve the leaching rate while the further enhancement of temperature decreases it. Extension leaching time can improve the leaching rate. On this basis, a BPNN model was established to study the effects of multi-parameters on leaching rate. The results show that the relative error is extremely small, thus the BPNN model has a high prediction precision. At last, optimized technical parameters which can yield high leaching rate of 99.5%were obtained by experimental and BPNN studies:residual acidity 50-60 g/L, oxidant addition content 10%, leaching temperature 70 ℃ and leaching time 2 h.
文摘The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.
基金Project(51271080) supported by the National Natural Science Foundation of ChinaProject(2012JSSPITP1968) supported by the Innovative Foundation for Students of Jiangsu Province,ChinaProject(CKJB201204) supported by the Innovation Fund of Nanjing Institute of Technology,China
文摘A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.