In this study, poly(y-glutamic acid)-coated Fe3O4 magnetic nanoparticles (y-PGA/Fe304 MNPs) were successfully fabricated using the co-precipitation method. Fe3O4 MNPs were also prepared for comparison. The av erag...In this study, poly(y-glutamic acid)-coated Fe3O4 magnetic nanoparticles (y-PGA/Fe304 MNPs) were successfully fabricated using the co-precipitation method. Fe3O4 MNPs were also prepared for comparison. The av erage size and specific surface area results reveal that 7-PGA/Fe304 MNPs (52.4 nm, 88.41 m2.g-1) have smaller particle size and larger specific surface area_ than Fe3O4 MNPs (62.0 nm, 76.83 mLg-1). The y-PGA/Fe3O4 MNPs展开更多
In recent decades, the outcomes of coronary heart disease (CHD) have markedly improved, which can be partly attributed to the use of novel drugs (especially statins and antiplatelet drugs) and partly to the evolut...In recent decades, the outcomes of coronary heart disease (CHD) have markedly improved, which can be partly attributed to the use of novel drugs (especially statins and antiplatelet drugs) and partly to the evolution ofpercutaneous coronary intervention (PCI). From percutaneous transluminal coronary angioplasty to bare-metal stent and then to drug-eluting stent, every step of PCI is attractive to interventional cardiologist, great progress has been made for patients with CHD. In the past few years, some successor devices for treating CHD have cmerged. Undoubtedly, drug-coated balloon (DCB), which was recommended by 2014 ESC Guidelines on myocardial revascularization, is a "shining star" among them. DCB involves a semi-compliant angioplasty balloon coated with an anti-proliferative agent that can exert antirestenotic efficacy by permeating into the vessel wall during balloon contact. This review discusses the conception and merits, preclinical data, emerging clinical indications, and results from clinical trials of this novel interventional technology. Although DCB has shown authentic efficacy in the treatment ofin-stent restenosis, its use in de novo coronary lesions is still in dispute. Hence, concerns and the future direction of DCB are also covered in this paper.展开更多
Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coatings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to ...Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coatings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to non-target organisms, imposex in gastropods and increased multiresistance among bacteria. Therefore,enzyme-based coatings could be a new alternative solution. A H2O2-producing bienzyme system was developed in this study. H2O2 can be produced from starch by the cooperation of α-amylase and glucose oxidase, which promotes the hydrolysis of polymeric chain and oxidizes the glucose to produce H2O2, respectively. The encapsulated bienzyme(A-G@BS) exhibits enhanced stabilities of thermal, pH, recycling and tolerance of xylene. The A-G@BScontaining coating releases H2O2 at rates exceeding a target of 36 nmol·cm-2·d-1for 90 days in a laboratory assay. The results demonstrate that the method is a promising coating technology for entrapping active enzymes,presenting an interesting avenue for enzyme-based antifouling solutions.展开更多
OBJECTIVE To evaluate the results and complications associated with nasopharyngeal carcinoma (NPC) treated with combined external-beam radiotherapy (EBR) and intracavitary brachytherapy (IB) using a new-type app...OBJECTIVE To evaluate the results and complications associated with nasopharyngeal carcinoma (NPC) treated with combined external-beam radiotherapy (EBR) and intracavitary brachytherapy (IB) using a new-type applicator. METHODS Eighty patients with untreated NPC were divided into two groups based on therapy methods. An experimental group was treated with EBR plus IB and a control group was treated only with EBR. IB was given to the patients of the experimental group when the external radiotherapy dose amounted to more than 60~65 Gy. The total dose of IB was 6~20 Gy and the total dose of EBR of the control group was 70~75 Gy. RESULTS Follow-up was conducted for 97.5% of the patients with re- suits as follows: the overall response rates (ORR) for the experimental and the control groups were 92.5% and 75.3% respectively (P〈0.05); the 3 and 5-year survival rates for the experimental group were 87.5% and 74.2% and for the control group, 65.0% and 55.6% (P〈0.05); for the experimental group, the 3 and 5-year disease-free survival rates were 72.5% and 64.5% and for the control group, 60.0% and 52.8% (P〉0.05).Some complications following radiotherapy showed a significant difference. CONCLUSION External irradiation plus intracavitary brachytherapy using a new-type applicator may improve the ORR and survival rates, reduce radiation complications and increase the quality of life. 展开更多
The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium allo...The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium alloy. A coMPact ceramic layer of more than 130 μm was developed on the movable endplate with the hardness up to HV1000 by means of microarc oxidation. A trial of tests conducted in a water power transmission system show that the maximum outlet pressure of the gear pump with the movable endplate treated by microarc oxidation, can reach 16 MPa. It is pointed out that the ceramic coating developed by microarc oxidation technology on the surface of aluminium alloy, is economical and feasible.展开更多
Cold spray technology,originated from the Institute of Theoretical and Applied Mechanics Siberian branch of the Russian Academy of Sciences,is a rapidly emerging industrial coating technology.Cold sprayed particles wi...Cold spray technology,originated from the Institute of Theoretical and Applied Mechanics Siberian branch of the Russian Academy of Sciences,is a rapidly emerging industrial coating technology.Cold sprayed particles with high-velocity impact onto a substrate so as to induce severe plastic deformation and then create a deposit.For its low temperature and high velocity compared with thermal spraying,the cold spraying process is increasingly used in the industries for protective coating.The deposition characteristics of the particles,coating formation and bonding mechanism of the cold spraying process are different from thermal spraying.Many theory investigations of the cold spraying process contribute to the development of the high performance coatings,which makes the cold spraying process as a popular research field.Presently,the deposition characteristics,bonding mechanism,process optimization as well as classical applications of the cold spraying technology in the past are reviewed,and the interesting points for the further development,optimization and applications of this technology are also recommended.展开更多
We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio ar...We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2OB@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (-99%), and good rate capability.展开更多
Theranostic nanomedicine that integrates diagnostic and therapeutic agents into one nanosystem has gained considerable momentum in the field of cancer treatment. Among diverse strategies for achieving theranostic capa...Theranostic nanomedicine that integrates diagnostic and therapeutic agents into one nanosystem has gained considerable momentum in the field of cancer treatment. Among diverse strategies for achieving theranostic capabilities, surface-nanopore engineering based on mesoporous silica coating has attracted great interest because of their negligible cytotoxicity and chemically active surface that can be easily modified to introduce various functional groups(e.g.,-COOH,-NH_2,-SH, etc.) via silanization, which can satisfy various requirements of conjugating biological molecules or functional nanoparticles. In addition,the nanopore-engineered biomaterials possess large surface area and high pore volume, ensuring desirable loading of therapeutic guest molecules. In this review, we comprehensively summarize the synthetic procedure/paradigm of nanopore engineering and further broad theranostic applications. Such nanopore-engineering strategy endows the biocompatible nanocomposites(e.g., Au,Ag, graphene, upconversion nanoparticles, Fe_3O_4, MXene, etc.) with versatile functional moieties, which enables the development of multifunctional nanoplatforms for multimodal diagnostic bio-imaging, photothermal therapy, photodynamic therapy,targeted drug delivery, synergetic therapy and imaging-guided therapies. Therefore, mesoporous silica-based surface-nanopore engineering integrates intriguing unique features for broadening the biomedical applications of the single mono-functional nanosystem, facilitating the development and further clinical translation of theranostic nanomedicine.展开更多
基金Supported by the National Natural Science Foundation of China (21276124), the Research Project of Natural Science for Universities Affiliated to Jiangsu Province (10KJB530002), Key Projects in the National Science & Technology Pillar Pro-gram (2011BAE07B09-3), the Jiangsu Provincial Science and Technology Support Program (BE2011831), and the State High Technology Research and Development Prograr of China (2011AA02A201).
文摘In this study, poly(y-glutamic acid)-coated Fe3O4 magnetic nanoparticles (y-PGA/Fe304 MNPs) were successfully fabricated using the co-precipitation method. Fe3O4 MNPs were also prepared for comparison. The av erage size and specific surface area results reveal that 7-PGA/Fe304 MNPs (52.4 nm, 88.41 m2.g-1) have smaller particle size and larger specific surface area_ than Fe3O4 MNPs (62.0 nm, 76.83 mLg-1). The y-PGA/Fe3O4 MNPs
文摘In recent decades, the outcomes of coronary heart disease (CHD) have markedly improved, which can be partly attributed to the use of novel drugs (especially statins and antiplatelet drugs) and partly to the evolution ofpercutaneous coronary intervention (PCI). From percutaneous transluminal coronary angioplasty to bare-metal stent and then to drug-eluting stent, every step of PCI is attractive to interventional cardiologist, great progress has been made for patients with CHD. In the past few years, some successor devices for treating CHD have cmerged. Undoubtedly, drug-coated balloon (DCB), which was recommended by 2014 ESC Guidelines on myocardial revascularization, is a "shining star" among them. DCB involves a semi-compliant angioplasty balloon coated with an anti-proliferative agent that can exert antirestenotic efficacy by permeating into the vessel wall during balloon contact. This review discusses the conception and merits, preclinical data, emerging clinical indications, and results from clinical trials of this novel interventional technology. Although DCB has shown authentic efficacy in the treatment ofin-stent restenosis, its use in de novo coronary lesions is still in dispute. Hence, concerns and the future direction of DCB are also covered in this paper.
基金Supported by the National Natural Science Foundation of China(21006020,21276060,21276062)the Application Basic Research Plan Key Basic Research Project of Hebei Province(11965150D)the Natural Science Foundation of Tianjin(13JCYBJC18500)
文摘Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coatings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to non-target organisms, imposex in gastropods and increased multiresistance among bacteria. Therefore,enzyme-based coatings could be a new alternative solution. A H2O2-producing bienzyme system was developed in this study. H2O2 can be produced from starch by the cooperation of α-amylase and glucose oxidase, which promotes the hydrolysis of polymeric chain and oxidizes the glucose to produce H2O2, respectively. The encapsulated bienzyme(A-G@BS) exhibits enhanced stabilities of thermal, pH, recycling and tolerance of xylene. The A-G@BScontaining coating releases H2O2 at rates exceeding a target of 36 nmol·cm-2·d-1for 90 days in a laboratory assay. The results demonstrate that the method is a promising coating technology for entrapping active enzymes,presenting an interesting avenue for enzyme-based antifouling solutions.
文摘OBJECTIVE To evaluate the results and complications associated with nasopharyngeal carcinoma (NPC) treated with combined external-beam radiotherapy (EBR) and intracavitary brachytherapy (IB) using a new-type applicator. METHODS Eighty patients with untreated NPC were divided into two groups based on therapy methods. An experimental group was treated with EBR plus IB and a control group was treated only with EBR. IB was given to the patients of the experimental group when the external radiotherapy dose amounted to more than 60~65 Gy. The total dose of IB was 6~20 Gy and the total dose of EBR of the control group was 70~75 Gy. RESULTS Follow-up was conducted for 97.5% of the patients with re- suits as follows: the overall response rates (ORR) for the experimental and the control groups were 92.5% and 75.3% respectively (P〈0.05); the 3 and 5-year survival rates for the experimental group were 87.5% and 74.2% and for the control group, 65.0% and 55.6% (P〈0.05); for the experimental group, the 3 and 5-year disease-free survival rates were 72.5% and 64.5% and for the control group, 60.0% and 52.8% (P〉0.05).Some complications following radiotherapy showed a significant difference. CONCLUSION External irradiation plus intracavitary brachytherapy using a new-type applicator may improve the ORR and survival rates, reduce radiation complications and increase the quality of life.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60772077)
文摘The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium alloy. A coMPact ceramic layer of more than 130 μm was developed on the movable endplate with the hardness up to HV1000 by means of microarc oxidation. A trial of tests conducted in a water power transmission system show that the maximum outlet pressure of the gear pump with the movable endplate treated by microarc oxidation, can reach 16 MPa. It is pointed out that the ceramic coating developed by microarc oxidation technology on the surface of aluminium alloy, is economical and feasible.
基金supported by the National Nature Science Foundation of China (Grant Nos. 50871019,50874009)
文摘Cold spray technology,originated from the Institute of Theoretical and Applied Mechanics Siberian branch of the Russian Academy of Sciences,is a rapidly emerging industrial coating technology.Cold sprayed particles with high-velocity impact onto a substrate so as to induce severe plastic deformation and then create a deposit.For its low temperature and high velocity compared with thermal spraying,the cold spraying process is increasingly used in the industries for protective coating.The deposition characteristics of the particles,coating formation and bonding mechanism of the cold spraying process are different from thermal spraying.Many theory investigations of the cold spraying process contribute to the development of the high performance coatings,which makes the cold spraying process as a popular research field.Presently,the deposition characteristics,bonding mechanism,process optimization as well as classical applications of the cold spraying technology in the past are reviewed,and the interesting points for the further development,optimization and applications of this technology are also recommended.
文摘We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe203 nanoparticles dispersed on graphene sheets (Fe2Og@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2OB@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (-99%), and good rate capability.
基金supported by the National Key R&D Program of China (2016YFA0203700)the National Natural Science Foundation of China (51722211, 51672303, 81472284, 81672699)+1 种基金the Program of Shanghai Academic Research Leader (18XD1404300)Young Elite Scientist Sponsorship Program by CAST (2015QNRC001)
文摘Theranostic nanomedicine that integrates diagnostic and therapeutic agents into one nanosystem has gained considerable momentum in the field of cancer treatment. Among diverse strategies for achieving theranostic capabilities, surface-nanopore engineering based on mesoporous silica coating has attracted great interest because of their negligible cytotoxicity and chemically active surface that can be easily modified to introduce various functional groups(e.g.,-COOH,-NH_2,-SH, etc.) via silanization, which can satisfy various requirements of conjugating biological molecules or functional nanoparticles. In addition,the nanopore-engineered biomaterials possess large surface area and high pore volume, ensuring desirable loading of therapeutic guest molecules. In this review, we comprehensively summarize the synthetic procedure/paradigm of nanopore engineering and further broad theranostic applications. Such nanopore-engineering strategy endows the biocompatible nanocomposites(e.g., Au,Ag, graphene, upconversion nanoparticles, Fe_3O_4, MXene, etc.) with versatile functional moieties, which enables the development of multifunctional nanoplatforms for multimodal diagnostic bio-imaging, photothermal therapy, photodynamic therapy,targeted drug delivery, synergetic therapy and imaging-guided therapies. Therefore, mesoporous silica-based surface-nanopore engineering integrates intriguing unique features for broadening the biomedical applications of the single mono-functional nanosystem, facilitating the development and further clinical translation of theranostic nanomedicine.