Composite coatings consisting of carbon and polytetrafluoroethylene(PTFE) were prepared on Ti alloy substrate by a simple two-step process of hydrothermal and impregnation. The morphology, composition, hydrophobic and...Composite coatings consisting of carbon and polytetrafluoroethylene(PTFE) were prepared on Ti alloy substrate by a simple two-step process of hydrothermal and impregnation. The morphology, composition, hydrophobic and corrosion properties of the composite coatings were characterized by scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR), water contact angle method, X-ray photoelectron spectroscopy(XPS) and electrochemical technique, respectively. The effect of PTFE content on the corrosion properties of the composite coatings was studied. It is found that the composite coating film exhibits a full coverage with uniformly distributed PTFE when 0.1 mol/L of glucose is used as carbon source and 20 wt.% PTFE suspension as impregnating solution. The coating with 20 wt.% PTFE has a good bonding strength with Ti plate and exhibits excellent hydrophobic property with a water contact angle of 142.3° as well as superior corrosion resistance with corrosion current density as low as 0.0045 μA/cm^2. With regard to its excellent hydrophobicity and corrosion resistance, the carbon-PTFE composite coating may find potential application in automobiles and metal corrosion industries.展开更多
Based on the serial-parallel model of single-layer board and the lamination theory, the forces exerted on different layers of the high-pressure hose and the resulting deformations were analyzed when the hose was radia...Based on the serial-parallel model of single-layer board and the lamination theory, the forces exerted on different layers of the high-pressure hose and the resulting deformations were analyzed when the hose was radially stretched. An equation was proposed to calculate the anisotropic elastic constant of the composite layer with the wound steel wires. Furthermore, the finite element analysis (FEA) model of the high-pressure hose was established, followed by a simulation of the forces that act on different layers, and their deformations. The simulation results show that the stress imposed on the inner reinforced layer and external reinforced layer of the high-pressure hose are approximately 150 MPa and 115 MPa, respectively, in the presence of inner pressure. The stress of the rubber coating and polyethylene coating is lower. The lowest stress occurs on the inner surface of the high-pressure hose and the rubber coating between the two composite layers. The deformation of the rubber layer in the inner surface of the high-pressure hose decreases gradually along the radial direction from the inner surface to the external surface. The deformation of the reinforced composite layer is less than that of the external surface of the rubber coating. The equivalent stress of the reinforced composite layer is higher than that caused by the inner pressure, due to the presence of both inner pressure and axial tension.展开更多
The process of obtaining of high quality Mn-Zn, Mn-Cu and Mn-Cu-Zn alloy coatings from complexing ligands--citrate, EDTA (ethylene diaminetetra acetic acid) and nitrilotriacetic acid solutions was studied. Factors a...The process of obtaining of high quality Mn-Zn, Mn-Cu and Mn-Cu-Zn alloy coatings from complexing ligands--citrate, EDTA (ethylene diaminetetra acetic acid) and nitrilotriacetic acid solutions was studied. Factors affecting stability of solutions containing ligand or ligands and influence of electrolysis parameters: electrolyte composition, pH, cathodic current density on chemical composition of the obtained coatings, on their current efficiency, morphology and structure were investigated.展开更多
In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on ...In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on MTES (methyltriethoxysilane), TPOZ (tetrapropoxide of zirconium) and PDMS (polydimethylsiloxane). The synthesis has been carried out at 25, 35 and 45 ℃ in order to evaluate the role of temperature in the structure, microstructure and anti-graffiti behavior as well. The incorporation of zirconium within the organic modified silica network, of sols after being gelled and dried, is evident by a shoulder which increased with temperature situated at 950 cml (Si-O-Zr bonds), and it is homogenously dispersed inside the matrix avoiding the formation of large ZrO2 precipitates. As the temperature increases, the hydrolysis and condensation reactions occur in more extension and thus, the obtained sols are more cross-linked and present more Si-O-Zr linkages. The promising anti-graffiti beha'4ior of the protectNe hybrids was qualitatively determined being the spot removal higher than 90%.展开更多
The study analysed the behaviour of titanium dioxide (TiO2) in polyethylene teraphthalate (PET) polymer coatings on ECCS steel plates. The work determined the thermal source affecting rutile distribution in the PE...The study analysed the behaviour of titanium dioxide (TiO2) in polyethylene teraphthalate (PET) polymer coatings on ECCS steel plates. The work determined the thermal source affecting rutile distribution in the PET coating: It originated in the manufacturing processes and thermomechanical treatments of the composite, and affected PET adherence on the steel. These results were contrasted with the behaviour of a non-heated coating to determine the conditions under which the ruffle exhibits changes on the PET coating. Measurements at cross-section and parallel intervals from the surface to the metal interface were made by FTIR-ATR and Raman vibrational spectroscopy techniques to characterise the rutile distribution in the PET thickness.展开更多
In this work a novel strategy has been developed to prepare well-dispersed amine-functionalized SiO2 nanodot-coated layered double hydroxide nano- composite (NH2-SiO2@LDH) via electrostatic interactions and condensa...In this work a novel strategy has been developed to prepare well-dispersed amine-functionalized SiO2 nanodot-coated layered double hydroxide nano- composite (NH2-SiO2@LDH) via electrostatic interactions and condensation of (3-aminopropyl)triethoxysilane (APTES). This nanocomposite system is well dispersed in culture media and phosphate buffered saline, and exhibits low cytotoxicity and good biocompatibility. The fluorescence microscopy images and flow cytometry data indicate that such an NH2-SiO2@LDH nanocomposite is able to efficiently deliver small interfering RNA (siRNA) into the U2OS cell line to inhibit cell proliferation. Thus, NH2-SiOR@LDH nanocomposite has a great potential as a nanocarrier for efficient gene delivery.展开更多
This contribution shows the strong influence of using chloroform instead of THF on the characteristics of thin films of supramolecular block copolymers of poly(styrene-b-4-vinyl pyridine) dip-coated in the so-called &...This contribution shows the strong influence of using chloroform instead of THF on the characteristics of thin films of supramolecular block copolymers of poly(styrene-b-4-vinyl pyridine) dip-coated in the so-called "capillarity" regime from solutions containing 1-naphthol or 1-naphthoic acid.The small molecule content in the dip-coated films was investigated by infrared spectroscopy and the film morphology by atomic force microscopy.It was found that the small molecule content in the films is constant with dip-coating rate in the range investigated,but it is higher for 1-naphthoic acid than for 1-naphthol.The main morphology observed was in the form of "islands" and "holes",which is typical of flat-on lamellae.These findings are related to hydrogen-bonding between the small molecule and pyridine being conserved in chloroform and to the good solubility of both blocks in this solvent,with differences between the two small molecules related to their differing H-bond strengths.These findings contrast strongly with what was observed previously using THF as a solvent,for which the SM content increases with dip-coating rate and the morphologies are mainly spherical and cylindrical in the same parameter range.展开更多
The electrorotation of microspheres coated with conductive surface is a novel and important technology for label-free biosensors. Using the electroless plating approach, the polystyrene microspheres with 15 μm and 25...The electrorotation of microspheres coated with conductive surface is a novel and important technology for label-free biosensors. Using the electroless plating approach, the polystyrene microspheres with 15 μm and 25 μm in diameters were coated with 50 nm gold layer in thickness. The electrorotation experiments on those gold coated polystyrene microspheres (GCPMs) were carried out. The results showed that they rotated in the opposite direction of the electric field in a low frequency range (100-100 kHz), and the maximum rotation speed was higher than that of uncoated microspheres. Based on the theory of traveling wave electroosmosis(TWEO) and induced charge electroosmosis (ICEO), the electrorotation of GCPMs was quantitively analyzed and confirmed by observing the fluid flow around GCPM. The equations describing the electroration speed of GCPMs were proposed, which are consistent with the experiment results.展开更多
基金Project(2018YFB1502500) supported by the National Key Research and Development Program of ChinaProject supported by State Key Laboratory of Powder Metallurgy,Central South University,China+1 种基金Projects(21506258,51774127) supported by the National Natural Science Foundation of ChinaProject(2019RS2067) supported by the Science and Technology Planning Project of Hunan Province,China
文摘Composite coatings consisting of carbon and polytetrafluoroethylene(PTFE) were prepared on Ti alloy substrate by a simple two-step process of hydrothermal and impregnation. The morphology, composition, hydrophobic and corrosion properties of the composite coatings were characterized by scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR), water contact angle method, X-ray photoelectron spectroscopy(XPS) and electrochemical technique, respectively. The effect of PTFE content on the corrosion properties of the composite coatings was studied. It is found that the composite coating film exhibits a full coverage with uniformly distributed PTFE when 0.1 mol/L of glucose is used as carbon source and 20 wt.% PTFE suspension as impregnating solution. The coating with 20 wt.% PTFE has a good bonding strength with Ti plate and exhibits excellent hydrophobic property with a water contact angle of 142.3° as well as superior corrosion resistance with corrosion current density as low as 0.0045 μA/cm^2. With regard to its excellent hydrophobicity and corrosion resistance, the carbon-PTFE composite coating may find potential application in automobiles and metal corrosion industries.
文摘Based on the serial-parallel model of single-layer board and the lamination theory, the forces exerted on different layers of the high-pressure hose and the resulting deformations were analyzed when the hose was radially stretched. An equation was proposed to calculate the anisotropic elastic constant of the composite layer with the wound steel wires. Furthermore, the finite element analysis (FEA) model of the high-pressure hose was established, followed by a simulation of the forces that act on different layers, and their deformations. The simulation results show that the stress imposed on the inner reinforced layer and external reinforced layer of the high-pressure hose are approximately 150 MPa and 115 MPa, respectively, in the presence of inner pressure. The stress of the rubber coating and polyethylene coating is lower. The lowest stress occurs on the inner surface of the high-pressure hose and the rubber coating between the two composite layers. The deformation of the rubber layer in the inner surface of the high-pressure hose decreases gradually along the radial direction from the inner surface to the external surface. The deformation of the reinforced composite layer is less than that of the external surface of the rubber coating. The equivalent stress of the reinforced composite layer is higher than that caused by the inner pressure, due to the presence of both inner pressure and axial tension.
文摘The process of obtaining of high quality Mn-Zn, Mn-Cu and Mn-Cu-Zn alloy coatings from complexing ligands--citrate, EDTA (ethylene diaminetetra acetic acid) and nitrilotriacetic acid solutions was studied. Factors affecting stability of solutions containing ligand or ligands and influence of electrolysis parameters: electrolyte composition, pH, cathodic current density on chemical composition of the obtained coatings, on their current efficiency, morphology and structure were investigated.
文摘In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on MTES (methyltriethoxysilane), TPOZ (tetrapropoxide of zirconium) and PDMS (polydimethylsiloxane). The synthesis has been carried out at 25, 35 and 45 ℃ in order to evaluate the role of temperature in the structure, microstructure and anti-graffiti behavior as well. The incorporation of zirconium within the organic modified silica network, of sols after being gelled and dried, is evident by a shoulder which increased with temperature situated at 950 cml (Si-O-Zr bonds), and it is homogenously dispersed inside the matrix avoiding the formation of large ZrO2 precipitates. As the temperature increases, the hydrolysis and condensation reactions occur in more extension and thus, the obtained sols are more cross-linked and present more Si-O-Zr linkages. The promising anti-graffiti beha'4ior of the protectNe hybrids was qualitatively determined being the spot removal higher than 90%.
文摘The study analysed the behaviour of titanium dioxide (TiO2) in polyethylene teraphthalate (PET) polymer coatings on ECCS steel plates. The work determined the thermal source affecting rutile distribution in the PET coating: It originated in the manufacturing processes and thermomechanical treatments of the composite, and affected PET adherence on the steel. These results were contrasted with the behaviour of a non-heated coating to determine the conditions under which the ruffle exhibits changes on the PET coating. Measurements at cross-section and parallel intervals from the surface to the metal interface were made by FTIR-ATR and Raman vibrational spectroscopy techniques to characterise the rutile distribution in the PET thickness.
文摘In this work a novel strategy has been developed to prepare well-dispersed amine-functionalized SiO2 nanodot-coated layered double hydroxide nano- composite (NH2-SiO2@LDH) via electrostatic interactions and condensation of (3-aminopropyl)triethoxysilane (APTES). This nanocomposite system is well dispersed in culture media and phosphate buffered saline, and exhibits low cytotoxicity and good biocompatibility. The fluorescence microscopy images and flow cytometry data indicate that such an NH2-SiO2@LDH nanocomposite is able to efficiently deliver small interfering RNA (siRNA) into the U2OS cell line to inhibit cell proliferation. Thus, NH2-SiOR@LDH nanocomposite has a great potential as a nanocarrier for efficient gene delivery.
基金supported by the Natural Sciences and Engineering Council of Canada (NSERC)the Fonds de recherche du Québec-Nature et Technologies (FQRNT)
文摘This contribution shows the strong influence of using chloroform instead of THF on the characteristics of thin films of supramolecular block copolymers of poly(styrene-b-4-vinyl pyridine) dip-coated in the so-called "capillarity" regime from solutions containing 1-naphthol or 1-naphthoic acid.The small molecule content in the dip-coated films was investigated by infrared spectroscopy and the film morphology by atomic force microscopy.It was found that the small molecule content in the films is constant with dip-coating rate in the range investigated,but it is higher for 1-naphthoic acid than for 1-naphthol.The main morphology observed was in the form of "islands" and "holes",which is typical of flat-on lamellae.These findings are related to hydrogen-bonding between the small molecule and pyridine being conserved in chloroform and to the good solubility of both blocks in this solvent,with differences between the two small molecules related to their differing H-bond strengths.These findings contrast strongly with what was observed previously using THF as a solvent,for which the SM content increases with dip-coating rate and the morphologies are mainly spherical and cylindrical in the same parameter range.
基金supported by the National Natural Science Foundation of China (Grant No. 51075087)the State Key Lab of Fluid Power Transmission and Control of ZheJiang University (Grant No. GZKF-201004)+1 种基金the China Scholarship Council (Grant No. 2009612129)Program for New Century Excellent Talents in University (Grant No. NCET-09-0054)
文摘The electrorotation of microspheres coated with conductive surface is a novel and important technology for label-free biosensors. Using the electroless plating approach, the polystyrene microspheres with 15 μm and 25 μm in diameters were coated with 50 nm gold layer in thickness. The electrorotation experiments on those gold coated polystyrene microspheres (GCPMs) were carried out. The results showed that they rotated in the opposite direction of the electric field in a low frequency range (100-100 kHz), and the maximum rotation speed was higher than that of uncoated microspheres. Based on the theory of traveling wave electroosmosis(TWEO) and induced charge electroosmosis (ICEO), the electrorotation of GCPMs was quantitively analyzed and confirmed by observing the fluid flow around GCPM. The equations describing the electroration speed of GCPMs were proposed, which are consistent with the experiment results.