The degradation coefficient is proposed to evaluate the degradation degree of organic coatings by directly anaIyzing the Bode plots of the electrochemical impedance spectroscopy (EIS) data. This paper investigated t...The degradation coefficient is proposed to evaluate the degradation degree of organic coatings by directly anaIyzing the Bode plots of the electrochemical impedance spectroscopy (EIS) data. This paper investigated the degradation of phenolic epoxy coating/tinplate system by EIS and the degradation coefficient value, which correlates well with the results of breakpoint frequency and variation of phase angle at 10 Hz. Furthermore, the degradation process was confirmed by scanning electron microscope (SEM) and scanning probe microscopy (SPM). It is concluded that degradation coefficient can be used for the fast evaluation of degradation degree of organic coatings in practical appli- cations.展开更多
The electrochemical behavior of X70 pipeline steel in (0.5mol·L-1 Na2CO3+1 mol·L-1 NaHCO3) solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). X-ray photoel...The electrochemical behavior of X70 pipeline steel in (0.5mol·L-1 Na2CO3+1 mol·L-1 NaHCO3) solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyze the composition and microstructure of the surface film. The results showed that there were two anodic peaks at -600 mV and -350 mV. The surface film formed at -600 mV mainly consisted of ferrous carbonates and ferrous hydroxycarbonates. It had a small reaction resistance. It was metastable and possessed poor protective property. Numerous pits and microcracks existed on the film, which could be the active paths for the initiation of stress corrosion cracking. The surface film formed at -350 mV, mainly consisted of ferric oxides. It has high reaction resistance and offered good protection for the substrate.展开更多
A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displa...A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions(FRF) by using a conversion method based on fast Fourier transformation(FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method(CGM) and discrete convolution fast Fourier transformation(DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameter h/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.展开更多
Numerical simulation and experimental study of the Vickers indentation testing of the Al2O3 ceramic coated by diamond-like carbon(DLC) layer were conducted.The numerical analysis was implemented by a two-dimensional f...Numerical simulation and experimental study of the Vickers indentation testing of the Al2O3 ceramic coated by diamond-like carbon(DLC) layer were conducted.The numerical analysis was implemented by a two-dimensional finite element(FE) axis symmetry model.FE analysis results gave insight into the fracture mechanism of DLC films coated on brittle ceramic(Al2O3) substrates.The maximum principal stress field was used to locate the most expected area for crack formation and propagation during the Vickers indentation testing.The results show that the median crack initiates in the interface under indenter,before ring crack occurs as the indenter presses down.Finally,the plastic deformation appears when the indenter penetrates into the substrate.The thicker DLC coating increases the Vickers hardness and fracture toughness.展开更多
A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature...A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature on the residual stress of the coatings is investigated. Simulated results show that the realistic situation strongly affects the residual stress. To be specific,i) The main residual stress concentrates on the coatings prepared on YG8 substrate,and the residual stress and its gradient of the coatings are bigger than that of the substrate; ii) TiAlN and TiCN coatings have better resistance compression than that of TiN coatings in the same condition; iii) The improved multilayer structure of the gradient hard coatings produces weaker residual stress but higher anti-pressure of the substrate.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
The superluminescent diode has been fabricated by applying an AR coating to the output facet of the semiconductor laser for the purpose of eliminating or suitably reducing the optical feedback. An exact method for mea...The superluminescent diode has been fabricated by applying an AR coating to the output facet of the semiconductor laser for the purpose of eliminating or suitably reducing the optical feedback. An exact method for measuring the modal reflectivity of the antireflection coating to a laser diode is described. It is based on measurements of the spectrum modulation depth of the resulting superluminescent diode output spectrum at arbitrary injection current, and modal reflectivity of less than 3 × 10-4 is obtained.展开更多
Thermal barrier coatings (TBC) have been improved for the engine applications. During working process of the engine, components were subjected to thermal stresses. For simulating thermally stressed engine parts, dis...Thermal barrier coatings (TBC) have been improved for the engine applications. During working process of the engine, components were subjected to thermal stresses. For simulating thermally stressed engine parts, disc specimen was objected to airflow at the temperatures about 1,000℃. In this study, finite element structural and thermal analyses were carried out on both uncoated (without coating) and ceramic-coated disc specimen using ANSYS code. A 150 micron super alloy bond coating (NiCrAIY) was first applied to the specimen. Then, the disc specimen was covered by 350 micron thickness of Mullit (3Al2O3.2SiO2) as a top coating. These analysis were performed for detecting the possible thermally problem areas. The disc's thermal stressed problematic areas were determined by the finite element analysis was helpful for improving the geometry and TBC.展开更多
Coronary stents are metal coils or mesh tubes delivered to blocked vessels through catheters, whic Recently, special drugs h are expanded by balloons to reopen and scaffold target vessels. are carried by stents (drug...Coronary stents are metal coils or mesh tubes delivered to blocked vessels through catheters, whic Recently, special drugs h are expanded by balloons to reopen and scaffold target vessels. are carried by stents (drug-eluting stents) to further reduce instent restenosis rate after stenting procedure. However, continual study on biomechanical characteristics of stents is necessary provide a more suitable drug loading for better interactions between stents and tissue, or to platform for drug-eluting stents. The purpose of this paper is to show how finite element methods can be used to study cell area and strut distribution changes of bent coronary stents. A same bending deformation was applied to two commercial coronary stent models by a rigid curved vessel. Results show that the stent design influenced the changes of cell area and strut distribution under bending situation. The stent with links had more cell area changes at outer curvature, and the stent with peak-peak ( 〉 〈 ) strut design could have strut contact and overlapping at inner curvature. In conclusion, this finite element method can be used to study and compare cell area and strut distribution changes of bent stents, and to provide a convenient tool for designers in testing and improving biomechanical characteristics of new stents.展开更多
A rotating cantilever sandwich-plate model with a pre-twisted and pre-set angle has been developed to investigate the vibrational behavior of an aero-engine turbine blade with thermal barrier coating(TBC) layers. The ...A rotating cantilever sandwich-plate model with a pre-twisted and pre-set angle has been developed to investigate the vibrational behavior of an aero-engine turbine blade with thermal barrier coating(TBC) layers. The classic von Karman plate theory and the first-order shear deformation theory are applied to derive the energy equations of the rotating TBC blade, in which the geometric shapes, the work ambient temperature, and the TBC material properties are considered. The Chebyshev-Ritz method is used to obtain the nature frequency of the rotating TBC blade. For static frequency and modal analysis, the finite-element method(FEM)is also applied to compare and validate the results from the Chebyshev-Ritz method. A good agreement is found among these kinds of methods. For dynamic frequency, the results are analyzed in detail concerning the influence of system parameters such as the thickness of the TBC layer, the working temperature, and the pre-twisted and pre-set angle. Finally, the Campbell diagram is demonstrated to analyze the resonance property of the cantilever sandwich TBC blade model.展开更多
Hydrogen-free diamond-like carbon (DLC) thin films were deposited at low temperature (less than 100~C) by an RF magne- tron sputtering facility. DLC films have the ability to change the sound velocity (E/p) in l...Hydrogen-free diamond-like carbon (DLC) thin films were deposited at low temperature (less than 100~C) by an RF magne- tron sputtering facility. DLC films have the ability to change the sound velocity (E/p) in loudspeakers for applications of hard coating. The hydrogen-free DLC films were coated onto PEI diaphragm substrates. The ID/IG ratio and the surface roughness are 2.09 and less than 0.86 nm (Ra) with a scanning area of 50 um x 50 um, respectively. Frequency response analysis of the DLC films on the diaphragm shows that the high frequency response increases by 0.2 dB-5.1 dB (6 kHz-ll.2 kHz), -0.4 dB-1.8 dB (11.8 kHz-20 kHz) on average. On the basis of the results of this study, we validated that it was feasible to sputter hydrogen-free DLC films on polymer substrates for mass production. These results also provided useful parameters for future applications of electro-acoustic devices.展开更多
基金Supported by Major State Basic Research Program of China ("973"Program,No. 2011CB610500)
文摘The degradation coefficient is proposed to evaluate the degradation degree of organic coatings by directly anaIyzing the Bode plots of the electrochemical impedance spectroscopy (EIS) data. This paper investigated the degradation of phenolic epoxy coating/tinplate system by EIS and the degradation coefficient value, which correlates well with the results of breakpoint frequency and variation of phase angle at 10 Hz. Furthermore, the degradation process was confirmed by scanning electron microscope (SEM) and scanning probe microscopy (SPM). It is concluded that degradation coefficient can be used for the fast evaluation of degradation degree of organic coatings in practical appli- cations.
基金Supported by State Key Basic Research Plan (G19990650).
文摘The electrochemical behavior of X70 pipeline steel in (0.5mol·L-1 Na2CO3+1 mol·L-1 NaHCO3) solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyze the composition and microstructure of the surface film. The results showed that there were two anodic peaks at -600 mV and -350 mV. The surface film formed at -600 mV mainly consisted of ferrous carbonates and ferrous hydroxycarbonates. It had a small reaction resistance. It was metastable and possessed poor protective property. Numerous pits and microcracks existed on the film, which could be the active paths for the initiation of stress corrosion cracking. The surface film formed at -350 mV, mainly consisted of ferric oxides. It has high reaction resistance and offered good protection for the substrate.
基金Project(2013CB632305)supported by the National Basic Research Program of ChinaProject(51375108)supported by the National Natural Science Foundation of China
文摘A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions(FRF) by using a conversion method based on fast Fourier transformation(FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method(CGM) and discrete convolution fast Fourier transformation(DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameter h/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.
文摘Numerical simulation and experimental study of the Vickers indentation testing of the Al2O3 ceramic coated by diamond-like carbon(DLC) layer were conducted.The numerical analysis was implemented by a two-dimensional finite element(FE) axis symmetry model.FE analysis results gave insight into the fracture mechanism of DLC films coated on brittle ceramic(Al2O3) substrates.The maximum principal stress field was used to locate the most expected area for crack formation and propagation during the Vickers indentation testing.The results show that the median crack initiates in the interface under indenter,before ring crack occurs as the indenter presses down.Finally,the plastic deformation appears when the indenter penetrates into the substrate.The thicker DLC coating increases the Vickers hardness and fracture toughness.
基金Supported by the National High Technology Research and Development Programme of China(No.2012AA09A203)Project of Sichuan Education Department(No.14ZA0321)
文摘A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature on the residual stress of the coatings is investigated. Simulated results show that the realistic situation strongly affects the residual stress. To be specific,i) The main residual stress concentrates on the coatings prepared on YG8 substrate,and the residual stress and its gradient of the coatings are bigger than that of the substrate; ii) TiAlN and TiCN coatings have better resistance compression than that of TiN coatings in the same condition; iii) The improved multilayer structure of the gradient hard coatings produces weaker residual stress but higher anti-pressure of the substrate.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.
文摘The superluminescent diode has been fabricated by applying an AR coating to the output facet of the semiconductor laser for the purpose of eliminating or suitably reducing the optical feedback. An exact method for measuring the modal reflectivity of the antireflection coating to a laser diode is described. It is based on measurements of the spectrum modulation depth of the resulting superluminescent diode output spectrum at arbitrary injection current, and modal reflectivity of less than 3 × 10-4 is obtained.
文摘Thermal barrier coatings (TBC) have been improved for the engine applications. During working process of the engine, components were subjected to thermal stresses. For simulating thermally stressed engine parts, disc specimen was objected to airflow at the temperatures about 1,000℃. In this study, finite element structural and thermal analyses were carried out on both uncoated (without coating) and ceramic-coated disc specimen using ANSYS code. A 150 micron super alloy bond coating (NiCrAIY) was first applied to the specimen. Then, the disc specimen was covered by 350 micron thickness of Mullit (3Al2O3.2SiO2) as a top coating. These analysis were performed for detecting the possible thermally problem areas. The disc's thermal stressed problematic areas were determined by the finite element analysis was helpful for improving the geometry and TBC.
文摘Coronary stents are metal coils or mesh tubes delivered to blocked vessels through catheters, whic Recently, special drugs h are expanded by balloons to reopen and scaffold target vessels. are carried by stents (drug-eluting stents) to further reduce instent restenosis rate after stenting procedure. However, continual study on biomechanical characteristics of stents is necessary provide a more suitable drug loading for better interactions between stents and tissue, or to platform for drug-eluting stents. The purpose of this paper is to show how finite element methods can be used to study cell area and strut distribution changes of bent coronary stents. A same bending deformation was applied to two commercial coronary stent models by a rigid curved vessel. Results show that the stent design influenced the changes of cell area and strut distribution under bending situation. The stent with links had more cell area changes at outer curvature, and the stent with peak-peak ( 〉 〈 ) strut design could have strut contact and overlapping at inner curvature. In conclusion, this finite element method can be used to study and compare cell area and strut distribution changes of bent stents, and to provide a convenient tool for designers in testing and improving biomechanical characteristics of new stents.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272016&11290152)the Beijing Municipal Commission of Educationthe Ri-Xin Talents Project of Beijing University of Technology
文摘A rotating cantilever sandwich-plate model with a pre-twisted and pre-set angle has been developed to investigate the vibrational behavior of an aero-engine turbine blade with thermal barrier coating(TBC) layers. The classic von Karman plate theory and the first-order shear deformation theory are applied to derive the energy equations of the rotating TBC blade, in which the geometric shapes, the work ambient temperature, and the TBC material properties are considered. The Chebyshev-Ritz method is used to obtain the nature frequency of the rotating TBC blade. For static frequency and modal analysis, the finite-element method(FEM)is also applied to compare and validate the results from the Chebyshev-Ritz method. A good agreement is found among these kinds of methods. For dynamic frequency, the results are analyzed in detail concerning the influence of system parameters such as the thickness of the TBC layer, the working temperature, and the pre-twisted and pre-set angle. Finally, the Campbell diagram is demonstrated to analyze the resonance property of the cantilever sandwich TBC blade model.
文摘Hydrogen-free diamond-like carbon (DLC) thin films were deposited at low temperature (less than 100~C) by an RF magne- tron sputtering facility. DLC films have the ability to change the sound velocity (E/p) in loudspeakers for applications of hard coating. The hydrogen-free DLC films were coated onto PEI diaphragm substrates. The ID/IG ratio and the surface roughness are 2.09 and less than 0.86 nm (Ra) with a scanning area of 50 um x 50 um, respectively. Frequency response analysis of the DLC films on the diaphragm shows that the high frequency response increases by 0.2 dB-5.1 dB (6 kHz-ll.2 kHz), -0.4 dB-1.8 dB (11.8 kHz-20 kHz) on average. On the basis of the results of this study, we validated that it was feasible to sputter hydrogen-free DLC films on polymer substrates for mass production. These results also provided useful parameters for future applications of electro-acoustic devices.