A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelec...A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelectron spectrometry(XPS), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD) and transmission electron microscopy(TEM). Hardness and adhesion were tested by nanoindentation and scratch tester, respectively. The friction properties were investigated by a reciprocating UMT-3MT ball-on-disk tribometer in air and seawater. The results showed that the multilayer coating consisted of three different layers, with Cr,Cr2N and CrN phases, respectively. Compared with CrN single layer coating, the adhesion of the multilayer coating was improved significantly, the hardness of the multilayer coating was(21±2) GPa. The corrosion resistance of the multilayer coating was also improved in artificial seawater. The friction coefficient of multilayer coating was lower than that of CrN single layer coating both in air and seawater.展开更多
The 6061 aluminum matrix composites reinforced with ZnO-coated Mg_2B_2O_5w were fabricated by squeeze casting method and followed by extruded under a technical equivalent condition. The mechanical properties and micro...The 6061 aluminum matrix composites reinforced with ZnO-coated Mg_2B_2O_5w were fabricated by squeeze casting method and followed by extruded under a technical equivalent condition. The mechanical properties and microstructures of the composites were investigated. The results showed that the elastic modulus of the as-cast composites increased straightly with increasing ZnO coating content. The ultimate tensile strength and yield strength of the as-cast composites rapidly increased initially and then declined with increasing ZnO coating content. However, the elongations of all the as-cast composites had similar values. The elongations of the composites were highly enhanced and the ultimate tensile strength of the composite without ZnO coating was the largest after extrusion. A number of whiskers in the composites with ZnO coating were fractured during the extrusion process, but the whiskers' breakage extent was limited with the increase of coating content.展开更多
Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,X...Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,XPS and SEM. Solid solution hardening results in a hardness increase from 24 GPa for TiN to 31.2 GPa for TiAlN. The higher hardness values of 36.7 GPa for TiSiN and 42.4 GPa for TiAlSiN are obtained by the incorporation of Si into TiN (TiAlN) coatings due to the formation of special three-dimensional net structure consisting of nanocrystalline (nc) TiN (TiAlN) encapsulated in an amorphous (a) Si3N4 matrix phase. Furthermore,the nc-TiAlN/a-Si3N4 coating shows the best machining performance.展开更多
The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,im...The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,immersion corrosion testing,and electrochemical measurement.The results show that a smooth coating containing NiAl,Ni_(3)Al,M_(7)C_(3),M_(23)C_(6)phases(M=Ni,Al,Cr,W,Fe)and WC particles is prepared by laser cladding.Under a laser scanning speed of 120 mm/min,the microhardness of the cladding coating is 9−11 times that of AlSi5Cu1Mg,due to the synergistic effect of excellent metallurgical bond and newly formed carbides.The Ni−WC coating shows higher corrosion potential(−318.09 mV)and lower corrosion current density(12.33μA/cm^(2))compared with the matrix.The crack-free,dense cladding coating obviously inhibits the penetration of Cl^(−)and H^(+),leading to the remarkedly improved corrosion resistance of cladding coating.展开更多
Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction a...Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction and wear behaviors relative to the physical vapor deposition (PVD) TiN coating were investigated. The results show that the TiCN coating features a thickness of 15μm with a primary phase of TiC 0.3 N 0.7 . The wear rates of the two coatings have no clear distinction at low applied loads. However, severe abrasive wear appears in the PVD TiN coating when the applied load exceeds 30 N, while the TiCN coating features better wear resistance. The abrasive wear with coating peelings is found to be the predominant wear mechanism at high applied loads.展开更多
3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3...3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.展开更多
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ...In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.展开更多
Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as...Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.展开更多
Ni–Co coatings with various cobalt contents were electrodeposited from modified Watts bath. The effect of cobalt content on electrodeposition mechanism of the coatings was studied by electro-chemical impedance spectr...Ni–Co coatings with various cobalt contents were electrodeposited from modified Watts bath. The effect of cobalt content on electrodeposition mechanism of the coatings was studied by electro-chemical impedance spectroscopy method (EIS). Surface morphology and crystallographic structure of the coatings were investigated by means of SEM and XRD. Mechanical properties of the coatings were determined using Vickers microhardness and tensile tests. It was found that with increasing the Co2+ions in electroplating bath, the charge transfer resistance (Rct)of Ni-Co film increased whereas the Warburg impedence decreased. This may be due to enhancement in coverage of cathode surface by Co(OH)2 and higher diffusion rate of metal ions towards cathode surface, respectively. Also, with increasing the cobalt content in the bath, cobalt content in the alloy coating increased anomalously and (111) texture consolidated gradually. With increasing the cobalt content up to 45% in alloy coating, the grain size decreased and consequently, hardness and strength of the alloy increased. Further enhancement of cobalt content up to 55% led to a little decrease in hardness and strength. The maximum ductility was observed for Ni-25%Co coating due to relatively small grain size and compact structure.展开更多
VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a se...VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a series of VAlN/Si_(3)N_(4) nano-multilayer coatings with varied Si_(3)N_(4) layer thicknesses were prepared by reactive sputtering method.The microstructure and mechanical properties of the coatings were both investigated.It is revealed that Si_(3)N_(4) with a shallow thickness(~0.4 nm)was crystallized and grown coherently with VAlN,showing a remarkable increase in hardness compared to VAlN monolayer coating.The hardness of coherently VAlN/Si_(3)N_(4) nano-multilayer coatings reached to 48.7 GPa.With further increase of Si_(3)N_(4) layer thickness,the coherent growth of nano-multilayers was terminated,showing amorphous structure formed in nano-multilayers and the hardness was declined.On the other hand,when Si_(3)N_(4) layer thickness was 0.4 nm,the friction coefficient of VAlN/Si_(3)N_(4) nano-multilayer coating was almost equal to that of VAlN monolayer coating,which was attributed to the crystallization of Si_(3)N_(4) and the produced coherent interfaces between VAlN and Si_(3)N_(4) for the hardening effect of nano-multilayer coatings.Upon further increase of Si_(3)N_(4) layer thickness,pronounced improvement of friction coefficient in VAlN/Si_(3)N_(4) nano-multilayer coating was observed.展开更多
In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magne...In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance.展开更多
The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The result...The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.展开更多
Abstract: An effective approach was conducted for estimating fracture toughness using the crack opening displacement (COD) method for plasma enhanced chemical vapor deposition (PECVD) coating materials. For this ...Abstract: An effective approach was conducted for estimating fracture toughness using the crack opening displacement (COD) method for plasma enhanced chemical vapor deposition (PECVD) coating materials. For this evaluation, an elastoplastic analysis was used to estimate critical COD values for single edge notched bending (SENB) specimens. The relationship between fracture toughness (Kic) and critical COD for SENB specimens was obtained. Microstructure of the interface between AleO3-TiO2 composite ceramic coatings and AISI 1045 steel substrates was studied by using scanning electron microscope (SEM). Chemical compositions were clarified by energy-dispersive X-ray spectroscopy (EDS). The results show that the interface between of Al203-TiO2 and substrate has mechanical combining. The nanohardness of the coatings can reach 1 200 GPa examined by nanoindentation. The Klc was calculated according to this relationship from critical COD. The bending process produces a significant relationship of COD independent of the axial force applied. Fractographic analysis was conducted to determine the crack length. From the physical analysis of nanoindentation curves, the elastic modulus of 1045/AI2O3-TiO2 is 180 GPa for the 50 μm film. The highest value of fracture toughness for 1045/A1203-TiO2-250 μm is 348 MPa·mv2.展开更多
TiC reinforced nickel-based composite coatings with different molybdenum contents were in-situ fabricated on 316L steel by the pulsed Nd:YAG laser in order to solve the severe wear problem of biomass fired boiler tube...TiC reinforced nickel-based composite coatings with different molybdenum contents were in-situ fabricated on 316L steel by the pulsed Nd:YAG laser in order to solve the severe wear problem of biomass fired boiler tubes.TiB 2 decomposed and formed several borides in composite coatings.The microstructure and phase compositions of coatings were analyzed by means of scanning electron microscopy (SEM),energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD).It was found that the increase of molybdenum could create new binder phases and lessen deficiencies in the coatings,preventing the reinforcement from being pulled out of the matrices and leading to less delaminations during erosion.Though the addition of molybdenum improved the average hardness of composites,it could not improve the wear resistance.The wear mechanisms of these composite coatings were further discussed in this paper.展开更多
基金Project(51475449)supported by the National Natural Science Foundation of China
文摘A Cr/Cr2N/CrN multilayer coating with a thickness of 24.4 μm was deposited by multi-arc ion plating. The coating was systematically characterized by field emission scanning electron microscopy(FESEM), X-ray photoelectron spectrometry(XPS), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD) and transmission electron microscopy(TEM). Hardness and adhesion were tested by nanoindentation and scratch tester, respectively. The friction properties were investigated by a reciprocating UMT-3MT ball-on-disk tribometer in air and seawater. The results showed that the multilayer coating consisted of three different layers, with Cr,Cr2N and CrN phases, respectively. Compared with CrN single layer coating, the adhesion of the multilayer coating was improved significantly, the hardness of the multilayer coating was(21±2) GPa. The corrosion resistance of the multilayer coating was also improved in artificial seawater. The friction coefficient of multilayer coating was lower than that of CrN single layer coating both in air and seawater.
基金Project(2011CB612200)supported by the National Basic Research Program of China
文摘The 6061 aluminum matrix composites reinforced with ZnO-coated Mg_2B_2O_5w were fabricated by squeeze casting method and followed by extruded under a technical equivalent condition. The mechanical properties and microstructures of the composites were investigated. The results showed that the elastic modulus of the as-cast composites increased straightly with increasing ZnO coating content. The ultimate tensile strength and yield strength of the as-cast composites rapidly increased initially and then declined with increasing ZnO coating content. However, the elongations of all the as-cast composites had similar values. The elongations of the composites were highly enhanced and the ultimate tensile strength of the composite without ZnO coating was the largest after extrusion. A number of whiskers in the composites with ZnO coating were fractured during the extrusion process, but the whiskers' breakage extent was limited with the increase of coating content.
基金Project(50721003) supported by Creative Research Group of National Natural Science Foundation of ChinaProject(2009ZX04012-021) supported by the National Major Special Science and Technology Program of China
文摘Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,XPS and SEM. Solid solution hardening results in a hardness increase from 24 GPa for TiN to 31.2 GPa for TiAlN. The higher hardness values of 36.7 GPa for TiSiN and 42.4 GPa for TiAlSiN are obtained by the incorporation of Si into TiN (TiAlN) coatings due to the formation of special three-dimensional net structure consisting of nanocrystalline (nc) TiN (TiAlN) encapsulated in an amorphous (a) Si3N4 matrix phase. Furthermore,the nc-TiAlN/a-Si3N4 coating shows the best machining performance.
文摘The microstructure,microhardness,and corrosion resistance of laser cladding Ni−WC coating on the surface of AlSi5Cu1Mg alloy were investigated by scanning electron microscopy,X-ray diffraction,microhardness testing,immersion corrosion testing,and electrochemical measurement.The results show that a smooth coating containing NiAl,Ni_(3)Al,M_(7)C_(3),M_(23)C_(6)phases(M=Ni,Al,Cr,W,Fe)and WC particles is prepared by laser cladding.Under a laser scanning speed of 120 mm/min,the microhardness of the cladding coating is 9−11 times that of AlSi5Cu1Mg,due to the synergistic effect of excellent metallurgical bond and newly formed carbides.The Ni−WC coating shows higher corrosion potential(−318.09 mV)and lower corrosion current density(12.33μA/cm^(2))compared with the matrix.The crack-free,dense cladding coating obviously inhibits the penetration of Cl^(−)and H^(+),leading to the remarkedly improved corrosion resistance of cladding coating.
基金Project(51075075)supported by the National Natural Science Foundation of China
文摘Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction and wear behaviors relative to the physical vapor deposition (PVD) TiN coating were investigated. The results show that the TiCN coating features a thickness of 15μm with a primary phase of TiC 0.3 N 0.7 . The wear rates of the two coatings have no clear distinction at low applied loads. However, severe abrasive wear appears in the PVD TiN coating when the applied load exceeds 30 N, while the TiCN coating features better wear resistance. The abrasive wear with coating peelings is found to be the predominant wear mechanism at high applied loads.
文摘3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air.
基金The authors are grateful for the financial supports from Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(U1630129).
文摘In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.
基金Project (50572090) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the States Key Laboratory of Solidification Processing in NWPU, China
文摘Molybdenum disilicide (MoSi2) sheath and aluminum oxide (Al2O3) core blended powders were fabricated by spray drying. A derived coating material was produced for the application as microwave absorbers using the as prepared powders by atmospheric plasma spray (APS) technology. The effects of MoSi2/Al2O3 mass ratio on the dielectric and physical mechanical properties of the composite coatings were investigated. When the MoSi2 content of the composites increases from 0 to 45%, the flexure strength and fracture toughness improve from 198 to 324 MPa and 3.05 to 4.82 MPa-m1/2 then decline to 310 MPa and 4.67 MPa-m1/2, respectively. The dielectric loss tangent increases with increasing MoSi2 content, and the real part of permittivity decreases conversely over the frequency range of 8.2-12.4 GHz. These effects are due to the agglomeration of early molten MoSi2 particles and the increase of the electrical conductivity with increasing MoSi2 content.
文摘Ni–Co coatings with various cobalt contents were electrodeposited from modified Watts bath. The effect of cobalt content on electrodeposition mechanism of the coatings was studied by electro-chemical impedance spectroscopy method (EIS). Surface morphology and crystallographic structure of the coatings were investigated by means of SEM and XRD. Mechanical properties of the coatings were determined using Vickers microhardness and tensile tests. It was found that with increasing the Co2+ions in electroplating bath, the charge transfer resistance (Rct)of Ni-Co film increased whereas the Warburg impedence decreased. This may be due to enhancement in coverage of cathode surface by Co(OH)2 and higher diffusion rate of metal ions towards cathode surface, respectively. Also, with increasing the cobalt content in the bath, cobalt content in the alloy coating increased anomalously and (111) texture consolidated gradually. With increasing the cobalt content up to 45% in alloy coating, the grain size decreased and consequently, hardness and strength of the alloy increased. Further enhancement of cobalt content up to 55% led to a little decrease in hardness and strength. The maximum ductility was observed for Ni-25%Co coating due to relatively small grain size and compact structure.
基金Project(51201187)supported by the National Natural Science Foundation of China。
文摘VAlN coating is of particular interest for dry cutting applications owing to its low-friction and excellent abrasiveness.Nano-multilayer structure is designed to tailor the properties of VAlN coating.In this work,a series of VAlN/Si_(3)N_(4) nano-multilayer coatings with varied Si_(3)N_(4) layer thicknesses were prepared by reactive sputtering method.The microstructure and mechanical properties of the coatings were both investigated.It is revealed that Si_(3)N_(4) with a shallow thickness(~0.4 nm)was crystallized and grown coherently with VAlN,showing a remarkable increase in hardness compared to VAlN monolayer coating.The hardness of coherently VAlN/Si_(3)N_(4) nano-multilayer coatings reached to 48.7 GPa.With further increase of Si_(3)N_(4) layer thickness,the coherent growth of nano-multilayers was terminated,showing amorphous structure formed in nano-multilayers and the hardness was declined.On the other hand,when Si_(3)N_(4) layer thickness was 0.4 nm,the friction coefficient of VAlN/Si_(3)N_(4) nano-multilayer coating was almost equal to that of VAlN monolayer coating,which was attributed to the crystallization of Si_(3)N_(4) and the produced coherent interfaces between VAlN and Si_(3)N_(4) for the hardening effect of nano-multilayer coatings.Upon further increase of Si_(3)N_(4) layer thickness,pronounced improvement of friction coefficient in VAlN/Si_(3)N_(4) nano-multilayer coating was observed.
基金Projects(2017GDAS CX-0202,2017GDAS CX-0111,2018 GDAS CX-0402) supported by Guangdong Academy of Science’ Special Project of Science and Technology Development,ChinaProject(2014B070705007) supported by Guangdong Science and Technology Plan Project,China+1 种基金Project(2016A030312015) supported by Scientific Research Fund of Guangdong Province,ChinaProject(2017A070701027) supported by Guangdong Science and Technology Program,China。
文摘In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance.
基金Supported by National Natural Science Foundation of China under Grant No.10902083the Natural Science Foundation of Shannxi Province under Grant No.2009GM1007
文摘The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.
基金Project supported by the National Research Foundation of Korea(2011-0030804)the Korea Research Foundation(KRF2009-0076450)funded by the Korea Government(MEST)
文摘Abstract: An effective approach was conducted for estimating fracture toughness using the crack opening displacement (COD) method for plasma enhanced chemical vapor deposition (PECVD) coating materials. For this evaluation, an elastoplastic analysis was used to estimate critical COD values for single edge notched bending (SENB) specimens. The relationship between fracture toughness (Kic) and critical COD for SENB specimens was obtained. Microstructure of the interface between AleO3-TiO2 composite ceramic coatings and AISI 1045 steel substrates was studied by using scanning electron microscope (SEM). Chemical compositions were clarified by energy-dispersive X-ray spectroscopy (EDS). The results show that the interface between of Al203-TiO2 and substrate has mechanical combining. The nanohardness of the coatings can reach 1 200 GPa examined by nanoindentation. The Klc was calculated according to this relationship from critical COD. The bending process produces a significant relationship of COD independent of the axial force applied. Fractographic analysis was conducted to determine the crack length. From the physical analysis of nanoindentation curves, the elastic modulus of 1045/AI2O3-TiO2 is 180 GPa for the 50 μm film. The highest value of fracture toughness for 1045/A1203-TiO2-250 μm is 348 MPa·mv2.
基金supported by the National Science & Technology Pillar Program (Grant No. 2011BEA12B03)the National Natural Science Foundation of China (Grant No. 51101056)+2 种基金the National Basic Research Program of China (Grant No. 2011CB710706)the Fundamental Research Funds for the Central Universities (Grant No. 12MS07)the State Key Laboratory of Advanced Metals and Materials (Grant No. 2010Z-02)
文摘TiC reinforced nickel-based composite coatings with different molybdenum contents were in-situ fabricated on 316L steel by the pulsed Nd:YAG laser in order to solve the severe wear problem of biomass fired boiler tubes.TiB 2 decomposed and formed several borides in composite coatings.The microstructure and phase compositions of coatings were analyzed by means of scanning electron microscopy (SEM),energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD).It was found that the increase of molybdenum could create new binder phases and lessen deficiencies in the coatings,preventing the reinforcement from being pulled out of the matrices and leading to less delaminations during erosion.Though the addition of molybdenum improved the average hardness of composites,it could not improve the wear resistance.The wear mechanisms of these composite coatings were further discussed in this paper.