Reclamation of tidal flat is one of the main ways to get a dynamic balance of the total amount of plowland. With the development of social economy and the increasing demand for plowland, the contradiction between tida...Reclamation of tidal flat is one of the main ways to get a dynamic balance of the total amount of plowland. With the development of social economy and the increasing demand for plowland, the contradiction between tidal flat reclamation and environment protection becomes more and more outstanding. However, tidal flat reclamation should also follow the dynamic balance of total amount of tidal flat amount. The paper analyzed the history of reclamation and development of Jiangsu mud coast, and calculated the feasible rates of tidal flat reclamation on different stretches respectively, and pointed out that both the economic social benefits of reclamation and the natural erosion-accretion conditions of the coasts should be taken into consideration in deciding the intensity of tidal flat reclamation, so as to satisfy demands on both reclamation and protection of tidal flat resource.展开更多
Fused-silica capillaries used in capillary zone electrophoresis were statically coated with γ- glycidoxypropyltrimethoxysilane and epoxy polymer in order to suppress wall adsorption in the separation of proteins. It ...Fused-silica capillaries used in capillary zone electrophoresis were statically coated with γ- glycidoxypropyltrimethoxysilane and epoxy polymer in order to suppress wall adsorption in the separation of proteins. It has been shown that a significant decrease in adsorption was obtained and eletroosmotic flow was the diminished in the pH range 3-5. However with higher pH values, appreciable peak deformation and decreases in the resolving power were observed. Under pH 5, the epoxy polymer coating was shown to be quite stable and exhibited reproducible separations from run-to-run and day-to-day over a period of time.展开更多
The aim was to research fresh-keeping effects of natamycin on cold-pre- served grape. Red globe grapes were processed with compound coating liquid of chitosan with mass fraction at 1% and natamycin with mass fractions...The aim was to research fresh-keeping effects of natamycin on cold-pre- served grape. Red globe grapes were processed with compound coating liquid of chitosan with mass fraction at 1% and natamycin with mass fractions at 0.20% (T1), 0.40% (T2) and 0.60% (T3), respectively. Grapes processed with water (CK3) and 1% chitosan (CK2) were taken as control groups. Rotten rate, seed shattering rate, mass loss rate, respiratory intensity and related physiological quality in test and control groups were compared. The results indicated that respiratory intensity, mass loss rate, rotten rate and seed shattering rate in CK1 were all higher than those in CK2. In addition, T1, T2 and T3 were lower in the indices than CK1 and CK2, but still kept at a high level in fruit hardness. Furthermore, mass fractions of Vc and titratable acid declined more slowly in T1, T2 and T3, compared with CK1 and CK2. Natamycin better preserved grapes and prolonged storage period. In general, natamycin with mass fraction at 0.4% proved best in fresh-keeping.展开更多
In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cem...In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions.展开更多
Through systematically theoretical analysis and experimental research,the failure mechanism,of CVD(chemical vapor deposition) coated carbide tools in wear and fracture conditions was studied.On the basis of mechanism ...Through systematically theoretical analysis and experimental research,the failure mechanism,of CVD(chemical vapor deposition) coated carbide tools in wear and fracture conditions was studied.On the basis of mechanism analysis,the specific suitability of the coated tools for cutting conditions was revealed and clarified.展开更多
Titanium alloys are poor in wear resistance and it is not suitable under sliding conditions even with lubrication because ofits severe adhesive wear tendency.The surface modifications through texturing and surface coa...Titanium alloys are poor in wear resistance and it is not suitable under sliding conditions even with lubrication because ofits severe adhesive wear tendency.The surface modifications through texturing and surface coating were used to enhance the surfaceproperties of the titanium alloy substrate.Hard and wear resistant coatings such as TiAlN and AlCrN were applied over texturedtitanium alloy surfaces with chromium as interlayer.To improve the friction and wear resisting performance of hard coatings further,solid lubricant,molybdenum disulphide(MoS2),was deposited on dimples made over hard coatings.Unidirectional sliding weartests were performed with pin on disc contact geometry,to evaluate the tribological performance of coated substrates.The tests wereperformed under three different normal loads for a period of40min at sliding velocity of2m/s.The tribological behaviours ofmulti-layer coatings such as coating structure,friction coefficient and specific wear rate were investigated and analyzed.The lowerfriction coefficient of approximately0.1was found at the early sliding stage,which reduces the material transfer and increases thewear life.Although,the friction coefficient increased to high values after MoS2coating was partially removed,substrate was stillprotected against wear by underlying hard composite layer.展开更多
AlTiN,AlTiN–Cu and AlTiN/AlTiN–Cu coatings were prepared on WC–6%Co substrates by cathode arc evaporation deposition technology.Two kinds of nitrogen pressures were used to deposit both AlTiN–Cu and AlTiN/AlTiN–C...AlTiN,AlTiN–Cu and AlTiN/AlTiN–Cu coatings were prepared on WC–6%Co substrates by cathode arc evaporation deposition technology.Two kinds of nitrogen pressures were used to deposit both AlTiN–Cu and AlTiN/AlTiN–Cu coatings.Surface and cross-sectional morphologies of films were observed by scanning electron microscopy(SEM).Crystal structure of films was analyzed by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).Hardness and adhesion of films were measured by nano-indentation and nano-scratch tester.Cutting tests were performed under milling conditions during wet machining of TC4 alloy.The results show that with addition of Cu,more droplets occur on AlTiN coating surface,but the grain size of it is refined,and the hardness decreases but the toughness is improved.Under higher N2 pressure,the defects on the surface of AlTiN–Cu and AlTiN/AlTiN–Cu coatings diminish,and the hardness of them is enhanced,while the adhesion is reduced.Compared to AlTiN coated cemented carbide tool,the lifetimes of AlTiN–Cu and AlTiN/AlTiN–Cu coated tools under the same N2 pressure are improved by 11%and 24%,respectively.展开更多
The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties we...The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties were investigated from 25 to 700℃.The results showed that the surface roughness and average grain size of VN/Ag coatings with transition multilayer interface are obviously larger than those of VN/Ag coatings with heterogeneous multilayer interface.The coatings with transition multilayer interface have higher adhesion force and hardness than the coatings with heterogeneous multilayer interface,and both coatings can effectively restrict the initiation and propagation of microcracks.Both coatings have excellent self-adaptive lubricating properties with a decrease of friction coefficient as the temperature increases,but their wear rates reveal a drastic increase.The phase composition of the worn area of both coatings was investigated,which indicates that a smooth Ag,Magnéli phase(V2O5)and bimetallic oxides(Ag3VO4 and AgVO3)can be responsible to the excellent lubricity of both coatings.To sum up,the coatings with transition multilayer interface have excellent adaptive lubricating properties and can properly control the diffusion rate and release rate of the lubricating phase,indicating that they have great potential in solving the problem of friction and wear of mechanical parts.展开更多
Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dr...Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dry milling experiment and FEM simulation to study the machinability of CGI and wear behaviour of tools. The experimental and FEM simulation results show that coated tool has great advantage in dry milling of CGI. SEM and EDS analysis of tool wear indicate the wear morphology and wear mechanism. Adhesive wear is the main mechanism to cause un- coated tool wear, while abrasive wear and delamination wear are the main mechanism to cause coated tool wear. Stress and temperature distribution in FEM simulation help to understand the wear mechanism including the reason for coat- ing peeled off.展开更多
A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature...A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature on the residual stress of the coatings is investigated. Simulated results show that the realistic situation strongly affects the residual stress. To be specific,i) The main residual stress concentrates on the coatings prepared on YG8 substrate,and the residual stress and its gradient of the coatings are bigger than that of the substrate; ii) TiAlN and TiCN coatings have better resistance compression than that of TiN coatings in the same condition; iii) The improved multilayer structure of the gradient hard coatings produces weaker residual stress but higher anti-pressure of the substrate.展开更多
Objective To investigate the effect of multiple coatings of the one-step self-etching adhesive on immediate microtensile bond strength to primary dentin.Methods Twelve caries-free human primary molars were randomly di...Objective To investigate the effect of multiple coatings of the one-step self-etching adhesive on immediate microtensile bond strength to primary dentin.Methods Twelve caries-free human primary molars were randomly divided into 2 groups with 6 teeth each.In group 1,each tooth was hemisected into two halves.One half was assigned to control subgroup 1,which was bonded with a single-step self-etching adhesive according to the manufacturer's instructions;the other half was assigned to experimental subgroup 1 in which the adhesive was applied three times before light curing.In group 2,the teeth were also hemisected into two halves.One half was assigned to control subgroup 2,which was bonded with the single-step self-etching adhesive according to the manufacturer's instructions;the other half was assigned to experimental subgroup 2 in which three layers of adhesive were applied with light curing each successive layer.Microtensile bond strength was immediately tested after specimen preparation.Results When the adhesive was applied three times before light curing,the bond strength of the experimental subgroup 1(n=33,57.49±11.61 MPa) was higher than that of the control subgroup 1(n=31,49.71±11.43 MPa,P<0.05).When using the technique of applying multiple layers of adhesive with light curing each successive layer,no difference of immediate bond strength was observed between the control subgroup 2 and the experimental subgroup 2(P>0.05).Conclusion Multiple coatings of one-step self-etching adhesive can increase the immediate bond strength to primary dentin when using the technique of light-curing after applying three layers of adhesive.展开更多
The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain s...The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.展开更多
Sodium hypochlorite and ozone are the principal active substances and usually employed in ballast water management systems. In the present study, the authors focus on the effect of these active substances to the maaix...Sodium hypochlorite and ozone are the principal active substances and usually employed in ballast water management systems. In the present study, the authors focus on the effect of these active substances to the maaix polymer of coating. In order to obtain such information, the authors investigated the penetration of active substances to the polymer from cross section of specimens introduced by SAICAS (surface and interracial cutting analysis system), followed by FT-IR-ATR (Fourier transform infrared and attenuated total reflectance) spectroscopy analysis from Z direction of cross section. The corrosion test of coating panels by these active substances (control as artificial seawater) has been conducted for 120 days. The results show that the depth profile of each active substance is around few dozens of micrometers from coating surface. The criteria of corrosion test cannot be determined by these results due to lacking in actual corrosion data immersed for 15 years under active substances. However, the authors evaluated the effect on ballast tank coating systems by active substances using analytical methods of SAICAS and FT-IR-ATR spectroscopy.展开更多
The application of cutting fluids in machining brings out many benefits, but their use is accompanied by health and enviroment hazards. MQL (Minimum Quantity Lubricant) has become a preciously alternative solution f...The application of cutting fluids in machining brings out many benefits, but their use is accompanied by health and enviroment hazards. MQL (Minimum Quantity Lubricant) has become a preciously alternative solution for lubrication against dry machinning and flood cooling lubricant, and this is a step toward green machining. This paper presents a comprehensively experiemental study on investigation of MQL performance in hard milling of S60C steel for multiple responses, including surface quality, cutting forces and tool wear. Compared to dry milling, even-enhanced surfaces finish quality, 20% less cutting force (Ft) and almost 112% prolonged tool lifetime are achieved by using MQL with 5% Emulsion in hard milling. In addition, this study compared the performances of MQL milling by using 5% Emulsion to the peanut oil completely harmless to the enviroment. This encouraging result, therefore, reveals that the MQL-employed hard milling can enable significant improvement in productivity, product quality, and overall machining economy even after covering the additional cost of designing and implementing MQL system. Moreover, this study also shows the limitation of peanut oils employed in MQL and proposes the further research in novel additives to enhance the performance of cooling lubricant for vegetable oils.展开更多
Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- geni...Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- genie acids that are generated in the sewer is essential in controlling the corrosion of concrete pipes and protective coatings. The role of succession of micro-organisms growth in the corrosion of concrete and protective coatings was evaluated in this study. Examination of various sewer pipe materials exhibiting various extents of degradation, including concrete, cement based and epoxy based coating revealed the presence of both organic and biogenic sulphuric acids. This reflects the activity of fungi and the thiobacilli strains. Organism growth and metabolism were strongly related to the substrate pH. Fungi were found to grow and metabolise organic acids at pH from 2.0-8.0. Whilst the thiobacilli strains grew and generated sulohuric acids at oH below 3.0. The successive growth of the organisms provides an impgrtant bearing in deyeloping improved strateegies.to better manage sewers.展开更多
Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytica...Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 rn/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247.展开更多
The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation...The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.展开更多
The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium allo...The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium alloy. A coMPact ceramic layer of more than 130 μm was developed on the movable endplate with the hardness up to HV1000 by means of microarc oxidation. A trial of tests conducted in a water power transmission system show that the maximum outlet pressure of the gear pump with the movable endplate treated by microarc oxidation, can reach 16 MPa. It is pointed out that the ceramic coating developed by microarc oxidation technology on the surface of aluminium alloy, is economical and feasible.展开更多
This work aims at developing an automatic system for the control of the APS (air plasma spraying) plasma process in which some instability phenomena are present. APS is a versatile technique to produce coatings of p...This work aims at developing an automatic system for the control of the APS (air plasma spraying) plasma process in which some instability phenomena are present. APS is a versatile technique to produce coatings of powder material at high deposition rates. Using this technique, powder particles are injected into a plasma jet, where they are melted and accelerated towards a substrate. The coating microstructures and properties depend strongly on the characteristics of the plasma jet, which can be controlled by the adjustment of the process parameters. However, the imeractions among the spray variables, render optimization and control of this process are quite complex. Understanding relationships between coating properties and process parameters is mandatory to optimize the process technique and the product quality. We are interested in this work to build an on-line control model for the APS process based on the elements of artificial intelligence and to build an emulator that replicates the dynamic behavior of the process as closely as possible.展开更多
文摘Reclamation of tidal flat is one of the main ways to get a dynamic balance of the total amount of plowland. With the development of social economy and the increasing demand for plowland, the contradiction between tidal flat reclamation and environment protection becomes more and more outstanding. However, tidal flat reclamation should also follow the dynamic balance of total amount of tidal flat amount. The paper analyzed the history of reclamation and development of Jiangsu mud coast, and calculated the feasible rates of tidal flat reclamation on different stretches respectively, and pointed out that both the economic social benefits of reclamation and the natural erosion-accretion conditions of the coasts should be taken into consideration in deciding the intensity of tidal flat reclamation, so as to satisfy demands on both reclamation and protection of tidal flat resource.
文摘Fused-silica capillaries used in capillary zone electrophoresis were statically coated with γ- glycidoxypropyltrimethoxysilane and epoxy polymer in order to suppress wall adsorption in the separation of proteins. It has been shown that a significant decrease in adsorption was obtained and eletroosmotic flow was the diminished in the pH range 3-5. However with higher pH values, appreciable peak deformation and decreases in the resolving power were observed. Under pH 5, the epoxy polymer coating was shown to be quite stable and exhibited reproducible separations from run-to-run and day-to-day over a period of time.
文摘The aim was to research fresh-keeping effects of natamycin on cold-pre- served grape. Red globe grapes were processed with compound coating liquid of chitosan with mass fraction at 1% and natamycin with mass fractions at 0.20% (T1), 0.40% (T2) and 0.60% (T3), respectively. Grapes processed with water (CK3) and 1% chitosan (CK2) were taken as control groups. Rotten rate, seed shattering rate, mass loss rate, respiratory intensity and related physiological quality in test and control groups were compared. The results indicated that respiratory intensity, mass loss rate, rotten rate and seed shattering rate in CK1 were all higher than those in CK2. In addition, T1, T2 and T3 were lower in the indices than CK1 and CK2, but still kept at a high level in fruit hardness. Furthermore, mass fractions of Vc and titratable acid declined more slowly in T1, T2 and T3, compared with CK1 and CK2. Natamycin better preserved grapes and prolonged storage period. In general, natamycin with mass fraction at 0.4% proved best in fresh-keeping.
文摘In machining the particle reinforced aluminum based composite material with high Si content using the cobalt-cemented tungsten carbide micro cutting tools, diamond like carbon (DLC) films are deposited on cobalt-cemented tungsten carbide micro-drills with two-step pretreatment method. Characteristics of DLC coated tools are investigated in bias-enhanced HFCVD system with the optimized hot filament arrangement. The optimization deposition technology is obtained and the wear mechanism of cutting tools is analyzed. The drilling performance of DLC coated tools is verified by the experiments of cutting particle reinforced aluminum based composite material (Si 15% in volume) compared with uncoated ones. Experimental results show that the two-step pretreatment method is appropriate for complex shaped cemented carbide substrates and ensures the good adhesive strength between the diamond film and the substrate. The cutting performance of DLC coated tool is enhanced 10 times when machining the Si particle reinforced aluminum based metal matrix composite compared with that of uncoated ones under the same cutting conditions.
文摘Through systematically theoretical analysis and experimental research,the failure mechanism,of CVD(chemical vapor deposition) coated carbide tools in wear and fracture conditions was studied.On the basis of mechanism analysis,the specific suitability of the coated tools for cutting conditions was revealed and clarified.
文摘Titanium alloys are poor in wear resistance and it is not suitable under sliding conditions even with lubrication because ofits severe adhesive wear tendency.The surface modifications through texturing and surface coating were used to enhance the surfaceproperties of the titanium alloy substrate.Hard and wear resistant coatings such as TiAlN and AlCrN were applied over texturedtitanium alloy surfaces with chromium as interlayer.To improve the friction and wear resisting performance of hard coatings further,solid lubricant,molybdenum disulphide(MoS2),was deposited on dimples made over hard coatings.Unidirectional sliding weartests were performed with pin on disc contact geometry,to evaluate the tribological performance of coated substrates.The tests wereperformed under three different normal loads for a period of40min at sliding velocity of2m/s.The tribological behaviours ofmulti-layer coatings such as coating structure,friction coefficient and specific wear rate were investigated and analyzed.The lowerfriction coefficient of approximately0.1was found at the early sliding stage,which reduces the material transfer and increases thewear life.Although,the friction coefficient increased to high values after MoS2coating was partially removed,substrate was stillprotected against wear by underlying hard composite layer.
基金Project(2014ZX04012011)supported by Major National Science and Technology Projects,ChinaProject(51327902)supported by the National Natural Science Foundation of China
文摘AlTiN,AlTiN–Cu and AlTiN/AlTiN–Cu coatings were prepared on WC–6%Co substrates by cathode arc evaporation deposition technology.Two kinds of nitrogen pressures were used to deposit both AlTiN–Cu and AlTiN/AlTiN–Cu coatings.Surface and cross-sectional morphologies of films were observed by scanning electron microscopy(SEM).Crystal structure of films was analyzed by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).Hardness and adhesion of films were measured by nano-indentation and nano-scratch tester.Cutting tests were performed under milling conditions during wet machining of TC4 alloy.The results show that with addition of Cu,more droplets occur on AlTiN coating surface,but the grain size of it is refined,and the hardness decreases but the toughness is improved.Under higher N2 pressure,the defects on the surface of AlTiN–Cu and AlTiN/AlTiN–Cu coatings diminish,and the hardness of them is enhanced,while the adhesion is reduced.Compared to AlTiN coated cemented carbide tool,the lifetimes of AlTiN–Cu and AlTiN/AlTiN–Cu coated tools under the same N2 pressure are improved by 11%and 24%,respectively.
基金Project(51505100)supported by the National Natural Science Foundation of China
文摘The heterogeneous multilayer interface of VN/Ag coatings and transition multilayer interface of VN/Ag coatings were prepared on Inconel 781 and Si(100),and the microstructures,mechanical and tribological properties were investigated from 25 to 700℃.The results showed that the surface roughness and average grain size of VN/Ag coatings with transition multilayer interface are obviously larger than those of VN/Ag coatings with heterogeneous multilayer interface.The coatings with transition multilayer interface have higher adhesion force and hardness than the coatings with heterogeneous multilayer interface,and both coatings can effectively restrict the initiation and propagation of microcracks.Both coatings have excellent self-adaptive lubricating properties with a decrease of friction coefficient as the temperature increases,but their wear rates reveal a drastic increase.The phase composition of the worn area of both coatings was investigated,which indicates that a smooth Ag,Magnéli phase(V2O5)and bimetallic oxides(Ag3VO4 and AgVO3)can be responsible to the excellent lubricity of both coatings.To sum up,the coatings with transition multilayer interface have excellent adaptive lubricating properties and can properly control the diffusion rate and release rate of the lubricating phase,indicating that they have great potential in solving the problem of friction and wear of mechanical parts.
基金Supported by National Natural Science Foundation of China (No. 50935001 and No. U0734007)Important National Science and Technology Specific Projects of China (No.,20011ZX04015-031)+1 种基金National High Technology Research and Development Program of China("863"Program, No. 2009AA04Z150)Major State Basic Research Development Program of China ("973"Program, No. 2010CB731703 and No. 2011CB706804)
文摘Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dry milling experiment and FEM simulation to study the machinability of CGI and wear behaviour of tools. The experimental and FEM simulation results show that coated tool has great advantage in dry milling of CGI. SEM and EDS analysis of tool wear indicate the wear morphology and wear mechanism. Adhesive wear is the main mechanism to cause un- coated tool wear, while abrasive wear and delamination wear are the main mechanism to cause coated tool wear. Stress and temperature distribution in FEM simulation help to understand the wear mechanism including the reason for coat- ing peeled off.
基金Supported by the National High Technology Research and Development Programme of China(No.2012AA09A203)Project of Sichuan Education Department(No.14ZA0321)
文摘A structure of gradient hard coatings( Ti,TiN,TiCN and TiAlN) is designed,and residual stress is simulated by a finite element method with ANSYS. The influence of the realistic situation including load and temperature on the residual stress of the coatings is investigated. Simulated results show that the realistic situation strongly affects the residual stress. To be specific,i) The main residual stress concentrates on the coatings prepared on YG8 substrate,and the residual stress and its gradient of the coatings are bigger than that of the substrate; ii) TiAlN and TiCN coatings have better resistance compression than that of TiN coatings in the same condition; iii) The improved multilayer structure of the gradient hard coatings produces weaker residual stress but higher anti-pressure of the substrate.
文摘Objective To investigate the effect of multiple coatings of the one-step self-etching adhesive on immediate microtensile bond strength to primary dentin.Methods Twelve caries-free human primary molars were randomly divided into 2 groups with 6 teeth each.In group 1,each tooth was hemisected into two halves.One half was assigned to control subgroup 1,which was bonded with a single-step self-etching adhesive according to the manufacturer's instructions;the other half was assigned to experimental subgroup 1 in which the adhesive was applied three times before light curing.In group 2,the teeth were also hemisected into two halves.One half was assigned to control subgroup 2,which was bonded with the single-step self-etching adhesive according to the manufacturer's instructions;the other half was assigned to experimental subgroup 2 in which three layers of adhesive were applied with light curing each successive layer.Microtensile bond strength was immediately tested after specimen preparation.Results When the adhesive was applied three times before light curing,the bond strength of the experimental subgroup 1(n=33,57.49±11.61 MPa) was higher than that of the control subgroup 1(n=31,49.71±11.43 MPa,P<0.05).When using the technique of applying multiple layers of adhesive with light curing each successive layer,no difference of immediate bond strength was observed between the control subgroup 2 and the experimental subgroup 2(P>0.05).Conclusion Multiple coatings of one-step self-etching adhesive can increase the immediate bond strength to primary dentin when using the technique of light-curing after applying three layers of adhesive.
基金supported by the National Natural Science Foundation of China(No.51275227)the Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX11_0175)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST201326)
文摘The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.
文摘Sodium hypochlorite and ozone are the principal active substances and usually employed in ballast water management systems. In the present study, the authors focus on the effect of these active substances to the maaix polymer of coating. In order to obtain such information, the authors investigated the penetration of active substances to the polymer from cross section of specimens introduced by SAICAS (surface and interracial cutting analysis system), followed by FT-IR-ATR (Fourier transform infrared and attenuated total reflectance) spectroscopy analysis from Z direction of cross section. The corrosion test of coating panels by these active substances (control as artificial seawater) has been conducted for 120 days. The results show that the depth profile of each active substance is around few dozens of micrometers from coating surface. The criteria of corrosion test cannot be determined by these results due to lacking in actual corrosion data immersed for 15 years under active substances. However, the authors evaluated the effect on ballast tank coating systems by active substances using analytical methods of SAICAS and FT-IR-ATR spectroscopy.
文摘The application of cutting fluids in machining brings out many benefits, but their use is accompanied by health and enviroment hazards. MQL (Minimum Quantity Lubricant) has become a preciously alternative solution for lubrication against dry machinning and flood cooling lubricant, and this is a step toward green machining. This paper presents a comprehensively experiemental study on investigation of MQL performance in hard milling of S60C steel for multiple responses, including surface quality, cutting forces and tool wear. Compared to dry milling, even-enhanced surfaces finish quality, 20% less cutting force (Ft) and almost 112% prolonged tool lifetime are achieved by using MQL with 5% Emulsion in hard milling. In addition, this study compared the performances of MQL milling by using 5% Emulsion to the peanut oil completely harmless to the enviroment. This encouraging result, therefore, reveals that the MQL-employed hard milling can enable significant improvement in productivity, product quality, and overall machining economy even after covering the additional cost of designing and implementing MQL system. Moreover, this study also shows the limitation of peanut oils employed in MQL and proposes the further research in novel additives to enhance the performance of cooling lubricant for vegetable oils.
文摘Microbiologically induced corrosion of concrete (MICC) and its protective coatings has a high eco-nomic impact on sewer maintenance and rehabilitation. A better understanding of the micro-organisms and the bio- genie acids that are generated in the sewer is essential in controlling the corrosion of concrete pipes and protective coatings. The role of succession of micro-organisms growth in the corrosion of concrete and protective coatings was evaluated in this study. Examination of various sewer pipe materials exhibiting various extents of degradation, including concrete, cement based and epoxy based coating revealed the presence of both organic and biogenic sulphuric acids. This reflects the activity of fungi and the thiobacilli strains. Organism growth and metabolism were strongly related to the substrate pH. Fungi were found to grow and metabolise organic acids at pH from 2.0-8.0. Whilst the thiobacilli strains grew and generated sulohuric acids at oH below 3.0. The successive growth of the organisms provides an impgrtant bearing in deyeloping improved strateegies.to better manage sewers.
文摘Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 rn/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247.
基金Projects supported by The 2nd Stage of Brain Korea and Korea Research Foundation
文摘The high-temperature oxidation resistance behavior of 7% (mass fraction) Y203-ZrO2 thermal barrier coatings (TBCs) irradiated by high-intensity pulsed ion beam (HIPIB) was investigated under the cyclic oxidation condition of 1 050 ℃ and 1 h. The columnar grains in the TBCs disappear after the HIPIB irradiation at ion current densities of 100-200 A/cm^2 and the irradiated surface becomes smooth and densified after remelting and ablation due to the HIPIB irradiation. The thermally grown oxide (TGO) layer thickness of the irradiated TBCs is smaller than that of the original TBCs. After 15 cycles, the mass gains of the original TBCs and those irradiated by ion current densities of 100 and 200 A/cm^2 due to the oxidation are found to be 0.8-0.9, 0.6-0.7, and 0.3-0.4 mg/cm^2, respectively. The inward diffusion of oxygen through the irradiated TBCs is significantly impeded by the densified top layer formed due to irradiation, which is the main reason for the improved overall oxidation resistance of the irradiated TBCs.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60772077)
文摘The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium alloy. A coMPact ceramic layer of more than 130 μm was developed on the movable endplate with the hardness up to HV1000 by means of microarc oxidation. A trial of tests conducted in a water power transmission system show that the maximum outlet pressure of the gear pump with the movable endplate treated by microarc oxidation, can reach 16 MPa. It is pointed out that the ceramic coating developed by microarc oxidation technology on the surface of aluminium alloy, is economical and feasible.
文摘This work aims at developing an automatic system for the control of the APS (air plasma spraying) plasma process in which some instability phenomena are present. APS is a versatile technique to produce coatings of powder material at high deposition rates. Using this technique, powder particles are injected into a plasma jet, where they are melted and accelerated towards a substrate. The coating microstructures and properties depend strongly on the characteristics of the plasma jet, which can be controlled by the adjustment of the process parameters. However, the imeractions among the spray variables, render optimization and control of this process are quite complex. Understanding relationships between coating properties and process parameters is mandatory to optimize the process technique and the product quality. We are interested in this work to build an on-line control model for the APS process based on the elements of artificial intelligence and to build an emulator that replicates the dynamic behavior of the process as closely as possible.