Raptors primarily use soaring-gliding flight which exploits thermals and ridge lifts over land to reduce energetic costs However during migration, these birds often have to cross water surfaces where thermal currents ...Raptors primarily use soaring-gliding flight which exploits thermals and ridge lifts over land to reduce energetic costs However during migration, these birds often have to cross water surfaces where thermal currents are weak; during these times, birds mainly use flapping (powered) flight which increases energy consumption and mortality risk. As a result, some species have evolved strategies to reduce the amount of time spent over water by taking extensive detours over land. In this paper, we con- ducted a meta-analysis of water-crossing tendencies in Afro-Palearctic migrating raptors in relation to their morphology, their flight performance, and their phylogenetic relationships. In particular, we considered the aspect ratio (calculated as the wing span squared divided by wing area), the energetic cost of powered flight, and the maximum water crossing length regularly performed by adult birds. Our results suggest that energy consumption during powered flight predominately affects the ability of raptors to fly over water surfaces展开更多
文摘Raptors primarily use soaring-gliding flight which exploits thermals and ridge lifts over land to reduce energetic costs However during migration, these birds often have to cross water surfaces where thermal currents are weak; during these times, birds mainly use flapping (powered) flight which increases energy consumption and mortality risk. As a result, some species have evolved strategies to reduce the amount of time spent over water by taking extensive detours over land. In this paper, we con- ducted a meta-analysis of water-crossing tendencies in Afro-Palearctic migrating raptors in relation to their morphology, their flight performance, and their phylogenetic relationships. In particular, we considered the aspect ratio (calculated as the wing span squared divided by wing area), the energetic cost of powered flight, and the maximum water crossing length regularly performed by adult birds. Our results suggest that energy consumption during powered flight predominately affects the ability of raptors to fly over water surfaces