The visual observation of the mold filling and the standard analysis-of-variance (ANOVA) for the velocity of the filling metal are conducted to study foam-metal interface behaviors during the mold filling of the los...The visual observation of the mold filling and the standard analysis-of-variance (ANOVA) for the velocity of the filling metal are conducted to study foam-metal interface behaviors during the mold filling of the lost foam casting (LFC) process of the magnesium alloy. Results show that the foam primarily melts into liquid products instead of gasifying at the pouring temperature of the magnesium alloy. Without the vacuum, the metal fills smoothly with a slightly convex metal front, and the velocity of the filling metal is low and continually decreases as the foam is displaced. The mold filling is governed by the removal of foam decomposition products at the foam-metal interface. However, when the vacuum is applied, the mold filling is controlled by the foam decomposition rate at the foam-metal interface. A pronounced irregular and concave metal front is formed. The velocity of the metal front varies tremendously during the mold filling process and is ruleless. The metal velocity increases rapidly, and the vacuum shows a strong interaction effect with the pouring temperature on the metal velocity. As the vacuum continues to increase, the pouring temperature becomes the most significant factor for the mold filling, while both the vacuum effect and the interaction effect between the vacuum and the pouring temperature on the metal velocity are substantially reduced. Based on experimental results, a model for the foam thermal degradation and the removal of decomposition products occurred at the foam-metal interface is presented during the mold filling of the magnesium alloy LFC process under the vacuum.展开更多
文摘The visual observation of the mold filling and the standard analysis-of-variance (ANOVA) for the velocity of the filling metal are conducted to study foam-metal interface behaviors during the mold filling of the lost foam casting (LFC) process of the magnesium alloy. Results show that the foam primarily melts into liquid products instead of gasifying at the pouring temperature of the magnesium alloy. Without the vacuum, the metal fills smoothly with a slightly convex metal front, and the velocity of the filling metal is low and continually decreases as the foam is displaced. The mold filling is governed by the removal of foam decomposition products at the foam-metal interface. However, when the vacuum is applied, the mold filling is controlled by the foam decomposition rate at the foam-metal interface. A pronounced irregular and concave metal front is formed. The velocity of the metal front varies tremendously during the mold filling process and is ruleless. The metal velocity increases rapidly, and the vacuum shows a strong interaction effect with the pouring temperature on the metal velocity. As the vacuum continues to increase, the pouring temperature becomes the most significant factor for the mold filling, while both the vacuum effect and the interaction effect between the vacuum and the pouring temperature on the metal velocity are substantially reduced. Based on experimental results, a model for the foam thermal degradation and the removal of decomposition products occurred at the foam-metal interface is presented during the mold filling of the magnesium alloy LFC process under the vacuum.