针对经典霍夫车道线检测方法实用性较差,无法准确区分车道线和路沿与应用道路场景简单等问题,提出了一种基于消失点和颜色过滤器的车道线检测算法,不仅提高车道线检测的准确率,而且能够应用较复杂行车场景;首先,对行车视频连续五帧图像...针对经典霍夫车道线检测方法实用性较差,无法准确区分车道线和路沿与应用道路场景简单等问题,提出了一种基于消失点和颜色过滤器的车道线检测算法,不仅提高车道线检测的准确率,而且能够应用较复杂行车场景;首先,对行车视频连续五帧图像进行预处理,获取行车环境下车道线消失点位置,能够自适应选取行车环境图像的感兴趣区域(Region of Interest,ROI);然后,对ROI图像根据车道线颜色特征进行过滤得到二值图像,获取二值图像中所有连通区域质心和倾斜角等数据,通过结合消失点特征和角度阈值进行限制,筛选记录符合车道线特征连通区域的数据,接着分割较大区域获取更多质心点,识别漏检符合车道线特征的区域质心点;最后,对获取的质心点使用最小二乘法进行拟合并标识车道线;实验结果表明:算法能够在多场景道路上快速准确的检测出车道线,与经典霍夫算法进行仿真比较,算法具有一定的鲁棒性和实时性。展开更多
文摘针对经典霍夫车道线检测方法实用性较差,无法准确区分车道线和路沿与应用道路场景简单等问题,提出了一种基于消失点和颜色过滤器的车道线检测算法,不仅提高车道线检测的准确率,而且能够应用较复杂行车场景;首先,对行车视频连续五帧图像进行预处理,获取行车环境下车道线消失点位置,能够自适应选取行车环境图像的感兴趣区域(Region of Interest,ROI);然后,对ROI图像根据车道线颜色特征进行过滤得到二值图像,获取二值图像中所有连通区域质心和倾斜角等数据,通过结合消失点特征和角度阈值进行限制,筛选记录符合车道线特征连通区域的数据,接着分割较大区域获取更多质心点,识别漏检符合车道线特征的区域质心点;最后,对获取的质心点使用最小二乘法进行拟合并标识车道线;实验结果表明:算法能够在多场景道路上快速准确的检测出车道线,与经典霍夫算法进行仿真比较,算法具有一定的鲁棒性和实时性。