In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet...In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet sorghum and Chinese cabbage were planted in purple soils, the quantities of digested biogas slurry were of 57, 157.5, and 34.5 t/hm2, respectively, while the quantities of digested biogas slurry were 70.5, 157.5 and 40.5 t/hm2 in yellow soils. Besides, the digested biogas slurries reached 36 and 27 t/hm2 as per flood irrigation and sprinkling irrigation when Chinese cabbages were planted in yellow soils. The research indicated crop variety, soil type, and irrigation method all have effects on farmland digestion of biogas slurry.展开更多
基金Supported by International Science&Technology Cooperation Program of China(2013DFA61260)Sub-project of National Science and Technology Planning in Rural Areas during the 12th Five-year Plan(2011BAD36B01)~~
文摘In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet sorghum and Chinese cabbage were planted in purple soils, the quantities of digested biogas slurry were of 57, 157.5, and 34.5 t/hm2, respectively, while the quantities of digested biogas slurry were 70.5, 157.5 and 40.5 t/hm2 in yellow soils. Besides, the digested biogas slurries reached 36 and 27 t/hm2 as per flood irrigation and sprinkling irrigation when Chinese cabbages were planted in yellow soils. The research indicated crop variety, soil type, and irrigation method all have effects on farmland digestion of biogas slurry.