根据Android应用在运行期的耗电时序波形与声波信号类似的特点,该文提出了一种基于Mel频谱倒谱系数(Mel frequency cepstral coefficients,MFCC)的恶意软件检测算法。首先计算耗电时序波形的MFCC,根据MFCC的分布构建Gauss混合模型(Gauss...根据Android应用在运行期的耗电时序波形与声波信号类似的特点,该文提出了一种基于Mel频谱倒谱系数(Mel frequency cepstral coefficients,MFCC)的恶意软件检测算法。首先计算耗电时序波形的MFCC,根据MFCC的分布构建Gauss混合模型(Gaussian mixture model,GMM)。然后采用GMM对电量消耗进行分析,通过对应用软件的分类处理识别恶意软件。实验证明:应用软件的功能与电量消耗关系密切,并且基于软件的电量消耗信息分析可以较准确地对移动终端的恶意软件进行检测。展开更多
为了进一步发挥混合动力汽车的节油性能,插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)在电量消耗(Charge-Depleting,CD)模式下,制订系统效率最优的能量管理策略来提高整车的电消耗行驶里程,进而实现提升整车燃油经济性的...为了进一步发挥混合动力汽车的节油性能,插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)在电量消耗(Charge-Depleting,CD)模式下,制订系统效率最优的能量管理策略来提高整车的电消耗行驶里程,进而实现提升整车燃油经济性的目的。分析了系统在电量消耗模式下相关典型工作模式,以车辆动力学方程为基础,推导出系统效率模型。以需求转矩、动力电池荷电状态、电机转速作为动力系统的输入,将系统效率最优作为系统的目标价值函数,在动力性指标的约束下,优化获得在电量消耗模式下的电机转矩和无级变速器速比的最佳控制规律,综合数值建模和试验数据建模方法,基于Matlab/Simulink软件平台构建插电式混合动力汽车的发动机、驱动电机、无级变速器(CVT)和动力电池等动力传动系统关键部件效率数值模型和整车动力学模型以及驾驶员模型,在新欧洲行驶循环(New European Driving Cycle,NEDC)工况下进行模型在环循环仿真验证分析。仿真结果表明,插电式混合动力汽车在电量消耗模式下,基于系统效率最优的能量管理策略能够使动力电池运行更加高效,转矩的分配更为合理,无级变速器获得较佳的控制规律。与直观式逻辑控制相比,纯电动续航里程提升了10.9 km,即经济性提高了15.3%,充分体现了所制订的控制策略的有效性。展开更多
The power consumption and electric field distribution in a field emission display (FED) panel is optimized with a novel pixel structure. A circuit model is proposed to estimate the total power consumption in an FED ...The power consumption and electric field distribution in a field emission display (FED) panel is optimized with a novel pixel structure. A circuit model is proposed to estimate the total power consumption in an FED panel which is composed of anode energy consumption, energy loss due to the leakage current and the energy dissipated in the parasitic capacitances. Moreover, the parasitic capacitances play a vital part in the power consumption and driving performance. In order to lower the parasitic capacitances, multiple dielectric layers are used as the gate electrode. Due to different etching speeds, a novel pixel structure is formed. As a result, the power consumption of an FED panel is reduced by 28% in a full white picture, and the electron beam performance is also better than that of the conventional structure.展开更多
The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and...The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.展开更多
文摘为了进一步发挥混合动力汽车的节油性能,插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,PHEV)在电量消耗(Charge-Depleting,CD)模式下,制订系统效率最优的能量管理策略来提高整车的电消耗行驶里程,进而实现提升整车燃油经济性的目的。分析了系统在电量消耗模式下相关典型工作模式,以车辆动力学方程为基础,推导出系统效率模型。以需求转矩、动力电池荷电状态、电机转速作为动力系统的输入,将系统效率最优作为系统的目标价值函数,在动力性指标的约束下,优化获得在电量消耗模式下的电机转矩和无级变速器速比的最佳控制规律,综合数值建模和试验数据建模方法,基于Matlab/Simulink软件平台构建插电式混合动力汽车的发动机、驱动电机、无级变速器(CVT)和动力电池等动力传动系统关键部件效率数值模型和整车动力学模型以及驾驶员模型,在新欧洲行驶循环(New European Driving Cycle,NEDC)工况下进行模型在环循环仿真验证分析。仿真结果表明,插电式混合动力汽车在电量消耗模式下,基于系统效率最优的能量管理策略能够使动力电池运行更加高效,转矩的分配更为合理,无级变速器获得较佳的控制规律。与直观式逻辑控制相比,纯电动续航里程提升了10.9 km,即经济性提高了15.3%,充分体现了所制订的控制策略的有效性。
基金The National Basic Research Program of China (973Program) (No.2003CB314702).
文摘The power consumption and electric field distribution in a field emission display (FED) panel is optimized with a novel pixel structure. A circuit model is proposed to estimate the total power consumption in an FED panel which is composed of anode energy consumption, energy loss due to the leakage current and the energy dissipated in the parasitic capacitances. Moreover, the parasitic capacitances play a vital part in the power consumption and driving performance. In order to lower the parasitic capacitances, multiple dielectric layers are used as the gate electrode. Due to different etching speeds, a novel pixel structure is formed. As a result, the power consumption of an FED panel is reduced by 28% in a full white picture, and the electron beam performance is also better than that of the conventional structure.
文摘The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method.