为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误...为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误差反向传播的神经网络来实现未来短期车速的预测,分析未来车辆需求功率变化,同时借助全球定位系统规划一条通往目的地的路径,智能交通系统便可获取整个行程的交通流量信息,利用行驶里程和SOC实时动态修正等效消耗最小策略中的等效因子,实现能量管理策略的自适应性.基于MATLAB/Simulink软件,搭建整车仿真模型与传统的能量管理策略进行仿真对比验证.仿真结果表明,采用基于神经网络的工况预测算法能够较好地预测未来短期工况,其预测精度相较于马尔可夫方法提高12.5%,所提出的能量管理策略在城市道路循环工况(UDDS)下的氢气消耗比电量消耗维持(CD/CS)策略下降55.6%.硬件在环试验表明,在市郊循环工况(EUDC)下的氢气消耗比CD/CS策略下降26.8%,仿真验证结果表明了所提出的策略相比于CD/CS策略在氢气消耗方面的优越性能,并通过硬件在环实验验证了所提策略的有效性.展开更多
为了改进燃料电池汽车的燃料经济性与环境适应性,基于等效燃料消耗最小策略,开展了燃料电池汽车能量管理与优化算法的研究。首先,基于车辆动力学模型求解得出的输出功率或制动回收功率,计算系统的等效燃料消耗,并将其作为优化目标,以期...为了改进燃料电池汽车的燃料经济性与环境适应性,基于等效燃料消耗最小策略,开展了燃料电池汽车能量管理与优化算法的研究。首先,基于车辆动力学模型求解得出的输出功率或制动回收功率,计算系统的等效燃料消耗,并将其作为优化目标,以期实现经济性最优的功率分配;其次,为了适应不同的环境工况,基于等效因子的实际物理意义,提出了随蓄电池荷电状态变化的可变等效因子,使燃料电池汽车能在更好地维持荷电状态的同时,可更充分地利用蓄电池空余能量。WLTC(worldwide harmonized light vehicles test cycle)和CATC(China automobile test cycle)等标准行驶工况下的仿真结果表明,所提出的基于可变等效因子的等效燃料消耗最小策略,可以满足燃料电池汽车降低氢耗、保持蓄电池荷电状态的功能,实现了能量管理与优化,具有较好的工况适应能力。展开更多
为了有效提高ISG重度混合动力汽车(full hybrid electric vehicle assisted by an integrated starter generator,ISG-FHEV)发动机和电机驱动系统效率以及整车的燃油经济性,设计了一种等效燃油消耗最小控制策略(equivalent consumption ...为了有效提高ISG重度混合动力汽车(full hybrid electric vehicle assisted by an integrated starter generator,ISG-FHEV)发动机和电机驱动系统效率以及整车的燃油经济性,设计了一种等效燃油消耗最小控制策略(equivalent consumption minimization strategy,ECMS);在分析ISG-FHEV功率分流模式的基础上,同时考虑发动机和电机驱动系统效率,构建出包含发动机和电机驱动系统的功率分配、ISG电机和主电机间的功率分配两个控制变量的整车等效燃油消耗最小目标函数;引入庞特里亚金极小值原理(pontryagin’s minimum principle,PMP)并加入电池SOC偏差控制确定等效因子;最后,进行了仿真和对比分析;结果表明,与基于规则的控制策略相比,发动机效率提高9%,ISG电机和主电机总效率提高11.4%,百公里耗油量降低9.98%。展开更多
文摘为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误差反向传播的神经网络来实现未来短期车速的预测,分析未来车辆需求功率变化,同时借助全球定位系统规划一条通往目的地的路径,智能交通系统便可获取整个行程的交通流量信息,利用行驶里程和SOC实时动态修正等效消耗最小策略中的等效因子,实现能量管理策略的自适应性.基于MATLAB/Simulink软件,搭建整车仿真模型与传统的能量管理策略进行仿真对比验证.仿真结果表明,采用基于神经网络的工况预测算法能够较好地预测未来短期工况,其预测精度相较于马尔可夫方法提高12.5%,所提出的能量管理策略在城市道路循环工况(UDDS)下的氢气消耗比电量消耗维持(CD/CS)策略下降55.6%.硬件在环试验表明,在市郊循环工况(EUDC)下的氢气消耗比CD/CS策略下降26.8%,仿真验证结果表明了所提出的策略相比于CD/CS策略在氢气消耗方面的优越性能,并通过硬件在环实验验证了所提策略的有效性.
文摘为了改进燃料电池汽车的燃料经济性与环境适应性,基于等效燃料消耗最小策略,开展了燃料电池汽车能量管理与优化算法的研究。首先,基于车辆动力学模型求解得出的输出功率或制动回收功率,计算系统的等效燃料消耗,并将其作为优化目标,以期实现经济性最优的功率分配;其次,为了适应不同的环境工况,基于等效因子的实际物理意义,提出了随蓄电池荷电状态变化的可变等效因子,使燃料电池汽车能在更好地维持荷电状态的同时,可更充分地利用蓄电池空余能量。WLTC(worldwide harmonized light vehicles test cycle)和CATC(China automobile test cycle)等标准行驶工况下的仿真结果表明,所提出的基于可变等效因子的等效燃料消耗最小策略,可以满足燃料电池汽车降低氢耗、保持蓄电池荷电状态的功能,实现了能量管理与优化,具有较好的工况适应能力。
文摘为了有效提高ISG重度混合动力汽车(full hybrid electric vehicle assisted by an integrated starter generator,ISG-FHEV)发动机和电机驱动系统效率以及整车的燃油经济性,设计了一种等效燃油消耗最小控制策略(equivalent consumption minimization strategy,ECMS);在分析ISG-FHEV功率分流模式的基础上,同时考虑发动机和电机驱动系统效率,构建出包含发动机和电机驱动系统的功率分配、ISG电机和主电机间的功率分配两个控制变量的整车等效燃油消耗最小目标函数;引入庞特里亚金极小值原理(pontryagin’s minimum principle,PMP)并加入电池SOC偏差控制确定等效因子;最后,进行了仿真和对比分析;结果表明,与基于规则的控制策略相比,发动机效率提高9%,ISG电机和主电机总效率提高11.4%,百公里耗油量降低9.98%。