The mechanical dewatering of activated sludge is difficult due to its high compressibility, which can be improved by electroosmosis. In electroosmosis, direct electric field is applied to sludge cake. Based on the con...The mechanical dewatering of activated sludge is difficult due to its high compressibility, which can be improved by electroosmosis. In electroosmosis, direct electric field is applied to sludge cake. Based on the conductivity modes of different sludge beds, a model is presented in which sludge cake consists of two series parts in the circuit: a dewatered bed and an undewatered one. The dewatered bed called solid conductor is mainly made up of immovable water and sludge particles. The undewatered bed includes movable water and solid conductor, which are connected in parallel in the circuit. The model describes the variation of water content with time and electric power consumption as a function of water content in sludge cake, and interprets the reason for the variation of electroosmotic dewatering rate. Comparison with the experimental data for electroosmotic dewatering under constant voltage supports the validity of the model.展开更多
基金Supported by Tianjin Research Program of Application Foundation and Advanced Technology(No. 09JCYBJC08200)
文摘The mechanical dewatering of activated sludge is difficult due to its high compressibility, which can be improved by electroosmosis. In electroosmosis, direct electric field is applied to sludge cake. Based on the conductivity modes of different sludge beds, a model is presented in which sludge cake consists of two series parts in the circuit: a dewatered bed and an undewatered one. The dewatered bed called solid conductor is mainly made up of immovable water and sludge particles. The undewatered bed includes movable water and solid conductor, which are connected in parallel in the circuit. The model describes the variation of water content with time and electric power consumption as a function of water content in sludge cake, and interprets the reason for the variation of electroosmotic dewatering rate. Comparison with the experimental data for electroosmotic dewatering under constant voltage supports the validity of the model.