期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
从“微笑曲线”到“元宝曲线”——对现代消费性电子产业价值创造模式的研究 被引量:4
1
作者 李愔萱 《中国商论》 2019年第4期226-228,共3页
随着技术进步与全球化的进展,产品内分工成为国际分工的主要形式。在此基础上,学者们依次提出了"微笑曲线""反微笑曲线"与"元宝曲线"三种产业附加价值分布模式。对于现代消费性电子产业而言,从传统的&qu... 随着技术进步与全球化的进展,产品内分工成为国际分工的主要形式。在此基础上,学者们依次提出了"微笑曲线""反微笑曲线"与"元宝曲线"三种产业附加价值分布模式。对于现代消费性电子产业而言,从传统的"微笑曲线"向"元宝曲线"发展,是实现产业平稳发展与利润最大化的最佳选择。本文探究了以华为有限公司为代表的我国消费性电子产业的价值创造模式,并对未来发展方向作出了预测。 展开更多
关键词 微笑曲线 元宝曲线 产业价值链 消费型电子产业 华为技术有限公司
下载PDF
区域产业同构对产业效率的影响研究 被引量:11
2
作者 罗能生 谭晶 《工业技术经济》 北大核心 2016年第2期81-89,共9页
本文构建包括产业规模比率、区位熵等在内的主要产业识别指标体系,以2003~2012年我国31个地区的工业主要产业为研究样本,统计出各产业在地区之间的同构程度,进而研究了区域产业同构对产业效率的影响。研究结果显示,总体上产业同构与产... 本文构建包括产业规模比率、区位熵等在内的主要产业识别指标体系,以2003~2012年我国31个地区的工业主要产业为研究样本,统计出各产业在地区之间的同构程度,进而研究了区域产业同构对产业效率的影响。研究结果显示,总体上产业同构与产业效率之间呈显著的负相关关系。而经过分类之后的实证结果表明,不同类型的产业,其地区同构程度与其综合技术效率和规模效率之间的关系是不一样的。 展开更多
关键词 主要产业 产业同构 产业效率 资源型产业 技术型产业 生活消费型产业
下载PDF
环境规制与数字经济:中国南北经济差异的诱致与扩大因素分析 被引量:5
3
作者 纪小乐 薛启航 魏建 《中国人口·资源与环境》 CSSCI CSCD 北大核心 2023年第12期94-108,共15页
将生态保护放在更加突出的位置上是践行新发展理念的突出特征之一,因此中国政府施行了严格的环境规制措施改善生态环境,并取得了显著成效。与此同时,南北方经济差距也引发广泛关注。利用2011—2020年中国地级市的有关数据进行实证分析,... 将生态保护放在更加突出的位置上是践行新发展理念的突出特征之一,因此中国政府施行了严格的环境规制措施改善生态环境,并取得了显著成效。与此同时,南北方经济差距也引发广泛关注。利用2011—2020年中国地级市的有关数据进行实证分析,发现:环境规制与地区经济增长之间存在着显著的“U”型关系,以市场力量为主要资源配置方式的消费型第三产业和生产型第三产业在南方地区发展优于北方,这种产业结构优势能够将环境改善带来的正外部性转化为经济效益,从而弱化环境规制对经济增长的负面作用。以计算机服务和软件业为代表的生产型第三产业作为数字经济的基础产业在南方地区发展优于北方,使得数字经济在南方地区优势产业门类推进迅速。门槛模型分析显示,当数字经济发展水平较低时,环境规制对南方地区经济发展起显著促进作用,而北方地区起抑制作用;当数字经济发展水平较高时,环境规制对南北方经济发展均表现为显著促进作用,但南方地区强度明显优于北方,这使得南北方经济差距呈放大趋势。因此,缩小南北方经济差距,需要加快北方地区产业结构的进一步优化,在充分利用数字经济机遇的同时,推动环境改善产生的环境红利不断转化为经济效益。 展开更多
关键词 南北经济差距 环境改善 产业结构 数字经济 市场力量 消费型第三产业
下载PDF
Static Model Classification Status: Taking Into Account Emerging External Factors
4
作者 Perminov G. I. 《Journal of Modern Accounting and Auditing》 2013年第6期798-807,共10页
Analysis of the problem of predicting bankruptcy shows that foreign and domestic models included only internal factors of enterprises. But the same indicators of internal factors in the rapidly changing external envir... Analysis of the problem of predicting bankruptcy shows that foreign and domestic models included only internal factors of enterprises. But the same indicators of internal factors in the rapidly changing external environment can lead to bankruptcy, and not in others. External factors are the most dangerous, because the possible influence on them is minimal and the impact of their implementation can be devastating. This paper focuses on the same factors to assess the impact of the macroeconomic indicators (extemal factors) on the parameters of static models predicting a local approximation of the crisis at the plant. To accomplish the purpose, a Spark set of 100 companies was compiled, including 50 companies which officially declared bankruptcy in the period of 2000-2009 and 50 stable operating companies with a random sample of the same time period. External factors were extracted from the Joint Economic and Social Data Archive1 The author compared two data sets: (1) microeconomic indicators--money to the total liabilities, retained earnings to total assets, net profit to revenue, Earnings Before Interest and Taxes (EBIT) to assets, net income to equity, net profit to total liabilities, current liabilities to total assets, the totality of short-term and long-term loans to total assets, current assets to current liabilities, assets to revenue, equity to total assets, and current assets to revenue; and (2) external factors--index of real gross domestic product (GDP), industrial production index, the index of real cash incomes, an index of real investments, consumer price index, the refinancing rate, unemployment rate, the price of electricity, gas prices, oil price, gas price, dollar to ruble, ruble euro Standard & Poor (S&P) index, the Russian Trading System (RTS) index, and region. The aim of the comparison results paging classes "insolvent" and "non-bankrupt" is achieved using two methods: classification and discrimination. In both methods, computational procedures are realized with the use of algorithms linear regression, artificial neural network, and genetic algorithm. In the 2-m model, data set includes both internal and external factors. The results showed that the inclusion of only the microeconomic indicators, excluding external factors, impedes models about two times. 展开更多
关键词 bankruptcy prediction external factors methods of classification and discrimination
下载PDF
The Relationship between Patterns of Economic Development and Increasing Carbon Emissions in Western China
5
作者 焦兵 杨凤明 《Journal of Resources and Ecology》 CSCD 2013年第1期56-62,共7页
With the implementation of the "Development of Western China" strategy, this region has become the fastest growing economic area in China. However, rapid economic growth has resulted in a substantial increase in car... With the implementation of the "Development of Western China" strategy, this region has become the fastest growing economic area in China. However, rapid economic growth has resulted in a substantial increase in carbon emissions and affected energy reduction goals. In order to effectively control the rapid increase in carbon emissions across western China, we need a comprehensively analyze the main factors causing these increases. Here, we analyze the relationship between economic development patterns and carbon emissions. The findings suggest that consumption upgrades and industrial transformation have a positive correlation with carbon emissions in this region. We then conducted an econometric FGLS analysis on the relationship and its transmission mechanism between economic growth and CO2 emissions with cross-province panel data from 1991 to 2009. A positive correlation was found, and the relationship is more significant after the implementation of the western development strategy. The influence coefficient of change in primary, secondary and tertiary industries is 16.4. The influence coefficient of increased share of heavy industry and extractive industry in the secondary industry is 14.3, and the influence coefficients of per-capita living expenditure and per capita traffic expenditure are 5.6 and 6.5. Traditional population size and income scale have a weak impact on carbon emissions, and the influence coefficients of population size and income scale are only 0.73 and 0.86. GDP increases have a second major impact on the carbon emissions. Energy intensity has a negative relationship with carbon emissions and urbanization level has a positive relationship (coefficients are -8.2 and 4.65). 展开更多
关键词 economic growth pattern carbon emission consumption upgrade industrial transformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部