Eruptive fires are one of the main causes of human losses in forest fire fighting. The sudden change in fire behaviour due to a fire eruption is extremely dangerous for fire-fighters because it is unpredictable. Very ...Eruptive fires are one of the main causes of human losses in forest fire fighting. The sudden change in fire behaviour due to a fire eruption is extremely dangerous for fire-fighters because it is unpredictable. Very little literature is available to support either modelling or occurrence prediction for this phenomenon. In this study, an unsteady physical model of fire spread is detailed, which describes the initiation and development of eruptive fires with an induced wind sub-model. The latter phenomenon is proposed as the mainspring of fire eruptions. Induced wind is proportional to the rate of spread and the rate of spread is in a non-linear relationship with induced wind. This feedback can converge or diverge depending on the conditions. The model allows both explaining why an eruption can occur and predicting explicitly its occurrence according to meteorological conditions, topographic parameters, fuel bed properties and fire front width. The model is tested by comparing its results to a set of experiments carried out at laboratory scale and during an outdoor wildfire, the Kornati accident.展开更多
文摘Eruptive fires are one of the main causes of human losses in forest fire fighting. The sudden change in fire behaviour due to a fire eruption is extremely dangerous for fire-fighters because it is unpredictable. Very little literature is available to support either modelling or occurrence prediction for this phenomenon. In this study, an unsteady physical model of fire spread is detailed, which describes the initiation and development of eruptive fires with an induced wind sub-model. The latter phenomenon is proposed as the mainspring of fire eruptions. Induced wind is proportional to the rate of spread and the rate of spread is in a non-linear relationship with induced wind. This feedback can converge or diverge depending on the conditions. The model allows both explaining why an eruption can occur and predicting explicitly its occurrence according to meteorological conditions, topographic parameters, fuel bed properties and fire front width. The model is tested by comparing its results to a set of experiments carried out at laboratory scale and during an outdoor wildfire, the Kornati accident.